Copied to
clipboard

G = D20.37D4order 320 = 26·5

7th non-split extension by D20 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D20.37D4, Dic10.36D4, C22⋊Q82D5, C4⋊C4.66D10, C4.102(D4×D5), (C2×C20).266D4, C20.153(C2×D4), C54(D4.7D4), (C2×Q8).28D10, D206C438C2, C10.48C22≀C2, C10.Q1637C2, (C22×C10).93D4, C10.100(C4○D8), C20.55D414C2, (C2×C20).366C23, (C22×C4).128D10, C23.27(C5⋊D4), (Q8×C10).46C22, C2.16(C23⋊D10), (C2×D20).251C22, C10.90(C8.C22), C2.19(D4.8D10), C2.11(C20.C23), (C22×C20).170C22, (C2×Dic10).278C22, (C2×Q8⋊D5)⋊9C2, (C2×C5⋊Q16)⋊8C2, (C5×C22⋊Q8)⋊2C2, (C2×C4○D20).10C2, (C2×C10).497(C2×D4), (C2×C4).173(C5⋊D4), (C5×C4⋊C4).113C22, (C2×C4).466(C22×D5), C22.172(C2×C5⋊D4), (C2×C52C8).115C22, SmallGroup(320,674)

Series: Derived Chief Lower central Upper central

C1C2×C20 — D20.37D4
C1C5C10C20C2×C20C2×D20C2×C4○D20 — D20.37D4
C5C10C2×C20 — D20.37D4
C1C22C22×C4C22⋊Q8

Generators and relations for D20.37D4
 G = < a,b,c,d | a20=b2=c4=1, d2=a10, bab=a-1, cac-1=a11, ad=da, cbc-1=a15b, bd=db, dcd-1=c-1 >

Subgroups: 622 in 152 conjugacy classes, 43 normal (39 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, SD16, Q16, C22×C4, C22×C4, C2×D4, C2×Q8, C2×Q8, C4○D4, Dic5, C20, C20, D10, C2×C10, C2×C10, C22⋊C8, D4⋊C4, Q8⋊C4, C22⋊Q8, C2×SD16, C2×Q16, C2×C4○D4, C52C8, Dic10, Dic10, C4×D5, D20, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×Q8, C22×D5, C22×C10, D4.7D4, C2×C52C8, Q8⋊D5, C5⋊Q16, C5×C22⋊C4, C5×C4⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×D20, C4○D20, C2×C5⋊D4, C22×C20, Q8×C10, D206C4, C10.Q16, C20.55D4, C2×Q8⋊D5, C2×C5⋊Q16, C5×C22⋊Q8, C2×C4○D20, D20.37D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, D10, C22≀C2, C4○D8, C8.C22, C5⋊D4, C22×D5, D4.7D4, D4×D5, C2×C5⋊D4, C23⋊D10, C20.C23, D4.8D10, D20.37D4

Smallest permutation representation of D20.37D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 11)(21 39)(22 38)(23 37)(24 36)(25 35)(26 34)(27 33)(28 32)(29 31)(41 52)(42 51)(43 50)(44 49)(45 48)(46 47)(53 60)(54 59)(55 58)(56 57)(61 62)(63 80)(64 79)(65 78)(66 77)(67 76)(68 75)(69 74)(70 73)(71 72)(81 100)(82 99)(83 98)(84 97)(85 96)(86 95)(87 94)(88 93)(89 92)(90 91)(101 109)(102 108)(103 107)(104 106)(110 120)(111 119)(112 118)(113 117)(114 116)(121 133)(122 132)(123 131)(124 130)(125 129)(126 128)(134 140)(135 139)(136 138)(142 160)(143 159)(144 158)(145 157)(146 156)(147 155)(148 154)(149 153)(150 152)
(1 38 91 113)(2 29 92 104)(3 40 93 115)(4 31 94 106)(5 22 95 117)(6 33 96 108)(7 24 97 119)(8 35 98 110)(9 26 99 101)(10 37 100 112)(11 28 81 103)(12 39 82 114)(13 30 83 105)(14 21 84 116)(15 32 85 107)(16 23 86 118)(17 34 87 109)(18 25 88 120)(19 36 89 111)(20 27 90 102)(41 143 76 129)(42 154 77 140)(43 145 78 131)(44 156 79 122)(45 147 80 133)(46 158 61 124)(47 149 62 135)(48 160 63 126)(49 151 64 137)(50 142 65 128)(51 153 66 139)(52 144 67 130)(53 155 68 121)(54 146 69 132)(55 157 70 123)(56 148 71 134)(57 159 72 125)(58 150 73 136)(59 141 74 127)(60 152 75 138)
(1 72 11 62)(2 73 12 63)(3 74 13 64)(4 75 14 65)(5 76 15 66)(6 77 16 67)(7 78 17 68)(8 79 18 69)(9 80 19 70)(10 61 20 71)(21 142 31 152)(22 143 32 153)(23 144 33 154)(24 145 34 155)(25 146 35 156)(26 147 36 157)(27 148 37 158)(28 149 38 159)(29 150 39 160)(30 151 40 141)(41 85 51 95)(42 86 52 96)(43 87 53 97)(44 88 54 98)(45 89 55 99)(46 90 56 100)(47 91 57 81)(48 92 58 82)(49 93 59 83)(50 94 60 84)(101 133 111 123)(102 134 112 124)(103 135 113 125)(104 136 114 126)(105 137 115 127)(106 138 116 128)(107 139 117 129)(108 140 118 130)(109 121 119 131)(110 122 120 132)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,39)(22,38)(23,37)(24,36)(25,35)(26,34)(27,33)(28,32)(29,31)(41,52)(42,51)(43,50)(44,49)(45,48)(46,47)(53,60)(54,59)(55,58)(56,57)(61,62)(63,80)(64,79)(65,78)(66,77)(67,76)(68,75)(69,74)(70,73)(71,72)(81,100)(82,99)(83,98)(84,97)(85,96)(86,95)(87,94)(88,93)(89,92)(90,91)(101,109)(102,108)(103,107)(104,106)(110,120)(111,119)(112,118)(113,117)(114,116)(121,133)(122,132)(123,131)(124,130)(125,129)(126,128)(134,140)(135,139)(136,138)(142,160)(143,159)(144,158)(145,157)(146,156)(147,155)(148,154)(149,153)(150,152), (1,38,91,113)(2,29,92,104)(3,40,93,115)(4,31,94,106)(5,22,95,117)(6,33,96,108)(7,24,97,119)(8,35,98,110)(9,26,99,101)(10,37,100,112)(11,28,81,103)(12,39,82,114)(13,30,83,105)(14,21,84,116)(15,32,85,107)(16,23,86,118)(17,34,87,109)(18,25,88,120)(19,36,89,111)(20,27,90,102)(41,143,76,129)(42,154,77,140)(43,145,78,131)(44,156,79,122)(45,147,80,133)(46,158,61,124)(47,149,62,135)(48,160,63,126)(49,151,64,137)(50,142,65,128)(51,153,66,139)(52,144,67,130)(53,155,68,121)(54,146,69,132)(55,157,70,123)(56,148,71,134)(57,159,72,125)(58,150,73,136)(59,141,74,127)(60,152,75,138), (1,72,11,62)(2,73,12,63)(3,74,13,64)(4,75,14,65)(5,76,15,66)(6,77,16,67)(7,78,17,68)(8,79,18,69)(9,80,19,70)(10,61,20,71)(21,142,31,152)(22,143,32,153)(23,144,33,154)(24,145,34,155)(25,146,35,156)(26,147,36,157)(27,148,37,158)(28,149,38,159)(29,150,39,160)(30,151,40,141)(41,85,51,95)(42,86,52,96)(43,87,53,97)(44,88,54,98)(45,89,55,99)(46,90,56,100)(47,91,57,81)(48,92,58,82)(49,93,59,83)(50,94,60,84)(101,133,111,123)(102,134,112,124)(103,135,113,125)(104,136,114,126)(105,137,115,127)(106,138,116,128)(107,139,117,129)(108,140,118,130)(109,121,119,131)(110,122,120,132)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,39)(22,38)(23,37)(24,36)(25,35)(26,34)(27,33)(28,32)(29,31)(41,52)(42,51)(43,50)(44,49)(45,48)(46,47)(53,60)(54,59)(55,58)(56,57)(61,62)(63,80)(64,79)(65,78)(66,77)(67,76)(68,75)(69,74)(70,73)(71,72)(81,100)(82,99)(83,98)(84,97)(85,96)(86,95)(87,94)(88,93)(89,92)(90,91)(101,109)(102,108)(103,107)(104,106)(110,120)(111,119)(112,118)(113,117)(114,116)(121,133)(122,132)(123,131)(124,130)(125,129)(126,128)(134,140)(135,139)(136,138)(142,160)(143,159)(144,158)(145,157)(146,156)(147,155)(148,154)(149,153)(150,152), (1,38,91,113)(2,29,92,104)(3,40,93,115)(4,31,94,106)(5,22,95,117)(6,33,96,108)(7,24,97,119)(8,35,98,110)(9,26,99,101)(10,37,100,112)(11,28,81,103)(12,39,82,114)(13,30,83,105)(14,21,84,116)(15,32,85,107)(16,23,86,118)(17,34,87,109)(18,25,88,120)(19,36,89,111)(20,27,90,102)(41,143,76,129)(42,154,77,140)(43,145,78,131)(44,156,79,122)(45,147,80,133)(46,158,61,124)(47,149,62,135)(48,160,63,126)(49,151,64,137)(50,142,65,128)(51,153,66,139)(52,144,67,130)(53,155,68,121)(54,146,69,132)(55,157,70,123)(56,148,71,134)(57,159,72,125)(58,150,73,136)(59,141,74,127)(60,152,75,138), (1,72,11,62)(2,73,12,63)(3,74,13,64)(4,75,14,65)(5,76,15,66)(6,77,16,67)(7,78,17,68)(8,79,18,69)(9,80,19,70)(10,61,20,71)(21,142,31,152)(22,143,32,153)(23,144,33,154)(24,145,34,155)(25,146,35,156)(26,147,36,157)(27,148,37,158)(28,149,38,159)(29,150,39,160)(30,151,40,141)(41,85,51,95)(42,86,52,96)(43,87,53,97)(44,88,54,98)(45,89,55,99)(46,90,56,100)(47,91,57,81)(48,92,58,82)(49,93,59,83)(50,94,60,84)(101,133,111,123)(102,134,112,124)(103,135,113,125)(104,136,114,126)(105,137,115,127)(106,138,116,128)(107,139,117,129)(108,140,118,130)(109,121,119,131)(110,122,120,132) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,39),(22,38),(23,37),(24,36),(25,35),(26,34),(27,33),(28,32),(29,31),(41,52),(42,51),(43,50),(44,49),(45,48),(46,47),(53,60),(54,59),(55,58),(56,57),(61,62),(63,80),(64,79),(65,78),(66,77),(67,76),(68,75),(69,74),(70,73),(71,72),(81,100),(82,99),(83,98),(84,97),(85,96),(86,95),(87,94),(88,93),(89,92),(90,91),(101,109),(102,108),(103,107),(104,106),(110,120),(111,119),(112,118),(113,117),(114,116),(121,133),(122,132),(123,131),(124,130),(125,129),(126,128),(134,140),(135,139),(136,138),(142,160),(143,159),(144,158),(145,157),(146,156),(147,155),(148,154),(149,153),(150,152)], [(1,38,91,113),(2,29,92,104),(3,40,93,115),(4,31,94,106),(5,22,95,117),(6,33,96,108),(7,24,97,119),(8,35,98,110),(9,26,99,101),(10,37,100,112),(11,28,81,103),(12,39,82,114),(13,30,83,105),(14,21,84,116),(15,32,85,107),(16,23,86,118),(17,34,87,109),(18,25,88,120),(19,36,89,111),(20,27,90,102),(41,143,76,129),(42,154,77,140),(43,145,78,131),(44,156,79,122),(45,147,80,133),(46,158,61,124),(47,149,62,135),(48,160,63,126),(49,151,64,137),(50,142,65,128),(51,153,66,139),(52,144,67,130),(53,155,68,121),(54,146,69,132),(55,157,70,123),(56,148,71,134),(57,159,72,125),(58,150,73,136),(59,141,74,127),(60,152,75,138)], [(1,72,11,62),(2,73,12,63),(3,74,13,64),(4,75,14,65),(5,76,15,66),(6,77,16,67),(7,78,17,68),(8,79,18,69),(9,80,19,70),(10,61,20,71),(21,142,31,152),(22,143,32,153),(23,144,33,154),(24,145,34,155),(25,146,35,156),(26,147,36,157),(27,148,37,158),(28,149,38,159),(29,150,39,160),(30,151,40,141),(41,85,51,95),(42,86,52,96),(43,87,53,97),(44,88,54,98),(45,89,55,99),(46,90,56,100),(47,91,57,81),(48,92,58,82),(49,93,59,83),(50,94,60,84),(101,133,111,123),(102,134,112,124),(103,135,113,125),(104,136,114,126),(105,137,115,127),(106,138,116,128),(107,139,117,129),(108,140,118,130),(109,121,119,131),(110,122,120,132)]])

47 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G4H5A5B8A8B8C8D10A···10F10G10H10I10J20A···20H20I···20P
order12222224444444455888810···101010101020···2020···20
size111142020222288202022202020202···244444···48···8

47 irreducible representations

dim11111111222222222224444
type++++++++++++++++-+
imageC1C2C2C2C2C2C2C2D4D4D4D4D5D10D10D10C4○D8C5⋊D4C5⋊D4C8.C22D4×D5C20.C23D4.8D10
kernelD20.37D4D206C4C10.Q16C20.55D4C2×Q8⋊D5C2×C5⋊Q16C5×C22⋊Q8C2×C4○D20Dic10D20C2×C20C22×C10C22⋊Q8C4⋊C4C22×C4C2×Q8C10C2×C4C23C10C4C2C2
# reps11111111221122224441444

Matrix representation of D20.37D4 in GL6(𝔽41)

010000
4000000
0040100
0053500
0000400
0000040
,
010000
100000
0040000
005100
0000400
0000361
,
29290000
29120000
001000
000100
00003336
0000138
,
3200000
0320000
001000
000100
000010
0000540

G:=sub<GL(6,GF(41))| [0,40,0,0,0,0,1,0,0,0,0,0,0,0,40,5,0,0,0,0,1,35,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,40,5,0,0,0,0,0,1,0,0,0,0,0,0,40,36,0,0,0,0,0,1],[29,29,0,0,0,0,29,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,33,13,0,0,0,0,36,8],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,5,0,0,0,0,0,40] >;

D20.37D4 in GAP, Magma, Sage, TeX

D_{20}._{37}D_4
% in TeX

G:=Group("D20.37D4");
// GroupNames label

G:=SmallGroup(320,674);
// by ID

G=gap.SmallGroup(320,674);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,254,219,184,1123,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^2=c^4=1,d^2=a^10,b*a*b=a^-1,c*a*c^-1=a^11,a*d=d*a,c*b*c^-1=a^15*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽