metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C10.642+ 1+4, C20⋊2D4⋊31C2, C4⋊C4.198D10, D20⋊8C4⋊34C2, D10⋊D4⋊33C2, (C2×D4).101D10, C22⋊C4.68D10, (C22×C4).50D10, D10.54(C4○D4), Dic5⋊D4⋊22C2, Dic5⋊4D4⋊23C2, (C2×C20).600C23, (C2×C10).205C24, C22.D4⋊10D5, D10.12D4⋊34C2, C2.66(D4⋊6D10), C23.29(C22×D5), Dic5.42(C4○D4), Dic5.Q8⋊28C2, (D4×C10).143C22, (C2×D20).163C22, C23.D10⋊33C2, C4⋊Dic5.229C22, (C22×C10).37C23, C22.226(C23×D5), C23.11D10⋊14C2, (C22×C20).369C22, C5⋊9(C22.47C24), (C4×Dic5).232C22, (C2×Dic5).256C23, C10.D4.43C22, (C22×D5).221C23, C23.D5.127C22, D10⋊C4.132C22, (C22×Dic5).131C22, (D5×C4⋊C4)⋊34C2, (C4×C5⋊D4)⋊49C2, C2.67(D5×C4○D4), C4⋊C4⋊D5⋊29C2, C10.179(C2×C4○D4), (C2×C4×D5).123C22, (C2×C4).67(C22×D5), (C5×C4⋊C4).178C22, (C2×C5⋊D4).49C22, (C5×C22.D4)⋊13C2, (C5×C22⋊C4).53C22, SmallGroup(320,1333)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C10.642+ 1+4
G = < a,b,c,d,e | a10=b4=e2=1, c2=a5, d2=a5b2, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc-1=b-1, dbd-1=ebe=a5b, cd=dc, ce=ec, ede=a5b2d >
Subgroups: 854 in 238 conjugacy classes, 95 normal (91 characteristic)
C1, C2, C2, C4, C22, C22, C5, C2×C4, C2×C4, D4, C23, C23, D5, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, Dic5, Dic5, C20, D10, D10, C2×C10, C2×C10, C2×C4⋊C4, C42⋊C2, C4×D4, C4⋊D4, C22.D4, C22.D4, C42.C2, C42⋊2C2, C4×D5, D20, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C22×D5, C22×C10, C22.47C24, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, C23.D5, C5×C22⋊C4, C5×C4⋊C4, C2×C4×D5, C2×D20, C22×Dic5, C2×C5⋊D4, C22×C20, D4×C10, C23.11D10, C23.D10, Dic5⋊4D4, D10.12D4, D10⋊D4, Dic5.Q8, D5×C4⋊C4, D20⋊8C4, C4⋊C4⋊D5, C4×C5⋊D4, C20⋊2D4, Dic5⋊D4, C5×C22.D4, C10.642+ 1+4
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, 2+ 1+4, C22×D5, C22.47C24, C23×D5, D4⋊6D10, D5×C4○D4, C10.642+ 1+4
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 138 13 128)(2 139 14 129)(3 140 15 130)(4 131 16 121)(5 132 17 122)(6 133 18 123)(7 134 19 124)(8 135 20 125)(9 136 11 126)(10 137 12 127)(21 156 31 146)(22 157 32 147)(23 158 33 148)(24 159 34 149)(25 160 35 150)(26 151 36 141)(27 152 37 142)(28 153 38 143)(29 154 39 144)(30 155 40 145)(41 91 51 81)(42 92 52 82)(43 93 53 83)(44 94 54 84)(45 95 55 85)(46 96 56 86)(47 97 57 87)(48 98 58 88)(49 99 59 89)(50 100 60 90)(61 111 71 101)(62 112 72 102)(63 113 73 103)(64 114 74 104)(65 115 75 105)(66 116 76 106)(67 117 77 107)(68 118 78 108)(69 119 79 109)(70 120 80 110)
(1 88 6 83)(2 89 7 84)(3 90 8 85)(4 81 9 86)(5 82 10 87)(11 96 16 91)(12 97 17 92)(13 98 18 93)(14 99 19 94)(15 100 20 95)(21 106 26 101)(22 107 27 102)(23 108 28 103)(24 109 29 104)(25 110 30 105)(31 116 36 111)(32 117 37 112)(33 118 38 113)(34 119 39 114)(35 120 40 115)(41 126 46 121)(42 127 47 122)(43 128 48 123)(44 129 49 124)(45 130 50 125)(51 136 56 131)(52 137 57 132)(53 138 58 133)(54 139 59 134)(55 140 60 135)(61 146 66 141)(62 147 67 142)(63 148 68 143)(64 149 69 144)(65 150 70 145)(71 156 76 151)(72 157 77 152)(73 158 78 153)(74 159 79 154)(75 160 80 155)
(1 133 18 128)(2 132 19 127)(3 131 20 126)(4 140 11 125)(5 139 12 124)(6 138 13 123)(7 137 14 122)(8 136 15 121)(9 135 16 130)(10 134 17 129)(21 145 36 160)(22 144 37 159)(23 143 38 158)(24 142 39 157)(25 141 40 156)(26 150 31 155)(27 149 32 154)(28 148 33 153)(29 147 34 152)(30 146 35 151)(41 85 56 100)(42 84 57 99)(43 83 58 98)(44 82 59 97)(45 81 60 96)(46 90 51 95)(47 89 52 94)(48 88 53 93)(49 87 54 92)(50 86 55 91)(61 115 76 110)(62 114 77 109)(63 113 78 108)(64 112 79 107)(65 111 80 106)(66 120 71 105)(67 119 72 104)(68 118 73 103)(69 117 74 102)(70 116 75 101)
(1 23)(2 24)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 21)(10 22)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(41 66)(42 67)(43 68)(44 69)(45 70)(46 61)(47 62)(48 63)(49 64)(50 65)(51 76)(52 77)(53 78)(54 79)(55 80)(56 71)(57 72)(58 73)(59 74)(60 75)(81 101)(82 102)(83 103)(84 104)(85 105)(86 106)(87 107)(88 108)(89 109)(90 110)(91 111)(92 112)(93 113)(94 114)(95 115)(96 116)(97 117)(98 118)(99 119)(100 120)(121 146)(122 147)(123 148)(124 149)(125 150)(126 141)(127 142)(128 143)(129 144)(130 145)(131 156)(132 157)(133 158)(134 159)(135 160)(136 151)(137 152)(138 153)(139 154)(140 155)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,138,13,128)(2,139,14,129)(3,140,15,130)(4,131,16,121)(5,132,17,122)(6,133,18,123)(7,134,19,124)(8,135,20,125)(9,136,11,126)(10,137,12,127)(21,156,31,146)(22,157,32,147)(23,158,33,148)(24,159,34,149)(25,160,35,150)(26,151,36,141)(27,152,37,142)(28,153,38,143)(29,154,39,144)(30,155,40,145)(41,91,51,81)(42,92,52,82)(43,93,53,83)(44,94,54,84)(45,95,55,85)(46,96,56,86)(47,97,57,87)(48,98,58,88)(49,99,59,89)(50,100,60,90)(61,111,71,101)(62,112,72,102)(63,113,73,103)(64,114,74,104)(65,115,75,105)(66,116,76,106)(67,117,77,107)(68,118,78,108)(69,119,79,109)(70,120,80,110), (1,88,6,83)(2,89,7,84)(3,90,8,85)(4,81,9,86)(5,82,10,87)(11,96,16,91)(12,97,17,92)(13,98,18,93)(14,99,19,94)(15,100,20,95)(21,106,26,101)(22,107,27,102)(23,108,28,103)(24,109,29,104)(25,110,30,105)(31,116,36,111)(32,117,37,112)(33,118,38,113)(34,119,39,114)(35,120,40,115)(41,126,46,121)(42,127,47,122)(43,128,48,123)(44,129,49,124)(45,130,50,125)(51,136,56,131)(52,137,57,132)(53,138,58,133)(54,139,59,134)(55,140,60,135)(61,146,66,141)(62,147,67,142)(63,148,68,143)(64,149,69,144)(65,150,70,145)(71,156,76,151)(72,157,77,152)(73,158,78,153)(74,159,79,154)(75,160,80,155), (1,133,18,128)(2,132,19,127)(3,131,20,126)(4,140,11,125)(5,139,12,124)(6,138,13,123)(7,137,14,122)(8,136,15,121)(9,135,16,130)(10,134,17,129)(21,145,36,160)(22,144,37,159)(23,143,38,158)(24,142,39,157)(25,141,40,156)(26,150,31,155)(27,149,32,154)(28,148,33,153)(29,147,34,152)(30,146,35,151)(41,85,56,100)(42,84,57,99)(43,83,58,98)(44,82,59,97)(45,81,60,96)(46,90,51,95)(47,89,52,94)(48,88,53,93)(49,87,54,92)(50,86,55,91)(61,115,76,110)(62,114,77,109)(63,113,78,108)(64,112,79,107)(65,111,80,106)(66,120,71,105)(67,119,72,104)(68,118,73,103)(69,117,74,102)(70,116,75,101), (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,21)(10,22)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,66)(42,67)(43,68)(44,69)(45,70)(46,61)(47,62)(48,63)(49,64)(50,65)(51,76)(52,77)(53,78)(54,79)(55,80)(56,71)(57,72)(58,73)(59,74)(60,75)(81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(121,146)(122,147)(123,148)(124,149)(125,150)(126,141)(127,142)(128,143)(129,144)(130,145)(131,156)(132,157)(133,158)(134,159)(135,160)(136,151)(137,152)(138,153)(139,154)(140,155)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,138,13,128)(2,139,14,129)(3,140,15,130)(4,131,16,121)(5,132,17,122)(6,133,18,123)(7,134,19,124)(8,135,20,125)(9,136,11,126)(10,137,12,127)(21,156,31,146)(22,157,32,147)(23,158,33,148)(24,159,34,149)(25,160,35,150)(26,151,36,141)(27,152,37,142)(28,153,38,143)(29,154,39,144)(30,155,40,145)(41,91,51,81)(42,92,52,82)(43,93,53,83)(44,94,54,84)(45,95,55,85)(46,96,56,86)(47,97,57,87)(48,98,58,88)(49,99,59,89)(50,100,60,90)(61,111,71,101)(62,112,72,102)(63,113,73,103)(64,114,74,104)(65,115,75,105)(66,116,76,106)(67,117,77,107)(68,118,78,108)(69,119,79,109)(70,120,80,110), (1,88,6,83)(2,89,7,84)(3,90,8,85)(4,81,9,86)(5,82,10,87)(11,96,16,91)(12,97,17,92)(13,98,18,93)(14,99,19,94)(15,100,20,95)(21,106,26,101)(22,107,27,102)(23,108,28,103)(24,109,29,104)(25,110,30,105)(31,116,36,111)(32,117,37,112)(33,118,38,113)(34,119,39,114)(35,120,40,115)(41,126,46,121)(42,127,47,122)(43,128,48,123)(44,129,49,124)(45,130,50,125)(51,136,56,131)(52,137,57,132)(53,138,58,133)(54,139,59,134)(55,140,60,135)(61,146,66,141)(62,147,67,142)(63,148,68,143)(64,149,69,144)(65,150,70,145)(71,156,76,151)(72,157,77,152)(73,158,78,153)(74,159,79,154)(75,160,80,155), (1,133,18,128)(2,132,19,127)(3,131,20,126)(4,140,11,125)(5,139,12,124)(6,138,13,123)(7,137,14,122)(8,136,15,121)(9,135,16,130)(10,134,17,129)(21,145,36,160)(22,144,37,159)(23,143,38,158)(24,142,39,157)(25,141,40,156)(26,150,31,155)(27,149,32,154)(28,148,33,153)(29,147,34,152)(30,146,35,151)(41,85,56,100)(42,84,57,99)(43,83,58,98)(44,82,59,97)(45,81,60,96)(46,90,51,95)(47,89,52,94)(48,88,53,93)(49,87,54,92)(50,86,55,91)(61,115,76,110)(62,114,77,109)(63,113,78,108)(64,112,79,107)(65,111,80,106)(66,120,71,105)(67,119,72,104)(68,118,73,103)(69,117,74,102)(70,116,75,101), (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,21)(10,22)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,66)(42,67)(43,68)(44,69)(45,70)(46,61)(47,62)(48,63)(49,64)(50,65)(51,76)(52,77)(53,78)(54,79)(55,80)(56,71)(57,72)(58,73)(59,74)(60,75)(81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(121,146)(122,147)(123,148)(124,149)(125,150)(126,141)(127,142)(128,143)(129,144)(130,145)(131,156)(132,157)(133,158)(134,159)(135,160)(136,151)(137,152)(138,153)(139,154)(140,155) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,138,13,128),(2,139,14,129),(3,140,15,130),(4,131,16,121),(5,132,17,122),(6,133,18,123),(7,134,19,124),(8,135,20,125),(9,136,11,126),(10,137,12,127),(21,156,31,146),(22,157,32,147),(23,158,33,148),(24,159,34,149),(25,160,35,150),(26,151,36,141),(27,152,37,142),(28,153,38,143),(29,154,39,144),(30,155,40,145),(41,91,51,81),(42,92,52,82),(43,93,53,83),(44,94,54,84),(45,95,55,85),(46,96,56,86),(47,97,57,87),(48,98,58,88),(49,99,59,89),(50,100,60,90),(61,111,71,101),(62,112,72,102),(63,113,73,103),(64,114,74,104),(65,115,75,105),(66,116,76,106),(67,117,77,107),(68,118,78,108),(69,119,79,109),(70,120,80,110)], [(1,88,6,83),(2,89,7,84),(3,90,8,85),(4,81,9,86),(5,82,10,87),(11,96,16,91),(12,97,17,92),(13,98,18,93),(14,99,19,94),(15,100,20,95),(21,106,26,101),(22,107,27,102),(23,108,28,103),(24,109,29,104),(25,110,30,105),(31,116,36,111),(32,117,37,112),(33,118,38,113),(34,119,39,114),(35,120,40,115),(41,126,46,121),(42,127,47,122),(43,128,48,123),(44,129,49,124),(45,130,50,125),(51,136,56,131),(52,137,57,132),(53,138,58,133),(54,139,59,134),(55,140,60,135),(61,146,66,141),(62,147,67,142),(63,148,68,143),(64,149,69,144),(65,150,70,145),(71,156,76,151),(72,157,77,152),(73,158,78,153),(74,159,79,154),(75,160,80,155)], [(1,133,18,128),(2,132,19,127),(3,131,20,126),(4,140,11,125),(5,139,12,124),(6,138,13,123),(7,137,14,122),(8,136,15,121),(9,135,16,130),(10,134,17,129),(21,145,36,160),(22,144,37,159),(23,143,38,158),(24,142,39,157),(25,141,40,156),(26,150,31,155),(27,149,32,154),(28,148,33,153),(29,147,34,152),(30,146,35,151),(41,85,56,100),(42,84,57,99),(43,83,58,98),(44,82,59,97),(45,81,60,96),(46,90,51,95),(47,89,52,94),(48,88,53,93),(49,87,54,92),(50,86,55,91),(61,115,76,110),(62,114,77,109),(63,113,78,108),(64,112,79,107),(65,111,80,106),(66,120,71,105),(67,119,72,104),(68,118,73,103),(69,117,74,102),(70,116,75,101)], [(1,23),(2,24),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,21),(10,22),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(41,66),(42,67),(43,68),(44,69),(45,70),(46,61),(47,62),(48,63),(49,64),(50,65),(51,76),(52,77),(53,78),(54,79),(55,80),(56,71),(57,72),(58,73),(59,74),(60,75),(81,101),(82,102),(83,103),(84,104),(85,105),(86,106),(87,107),(88,108),(89,109),(90,110),(91,111),(92,112),(93,113),(94,114),(95,115),(96,116),(97,117),(98,118),(99,119),(100,120),(121,146),(122,147),(123,148),(124,149),(125,150),(126,141),(127,142),(128,143),(129,144),(130,145),(131,156),(132,157),(133,158),(134,159),(135,160),(136,151),(137,152),(138,153),(139,154),(140,155)]])
53 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | ··· | 4M | 4N | 4O | 4P | 5A | 5B | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 10K | 10L | 20A | ··· | 20H | 20I | ··· | 20N |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 10 | 10 | 20 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 10 | ··· | 10 | 20 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 4 | ··· | 4 | 8 | ··· | 8 |
53 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D5 | C4○D4 | C4○D4 | D10 | D10 | D10 | D10 | 2+ 1+4 | D4⋊6D10 | D5×C4○D4 |
kernel | C10.642+ 1+4 | C23.11D10 | C23.D10 | Dic5⋊4D4 | D10.12D4 | D10⋊D4 | Dic5.Q8 | D5×C4⋊C4 | D20⋊8C4 | C4⋊C4⋊D5 | C4×C5⋊D4 | C20⋊2D4 | Dic5⋊D4 | C5×C22.D4 | C22.D4 | Dic5 | D10 | C22⋊C4 | C4⋊C4 | C22×C4 | C2×D4 | C10 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 4 | 4 | 6 | 4 | 2 | 2 | 1 | 4 | 8 |
Matrix representation of C10.642+ 1+4 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 35 | 35 |
0 | 0 | 0 | 0 | 6 | 40 |
9 | 25 | 0 | 0 | 0 | 0 |
5 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 40 | 0 | 0 |
0 | 0 | 2 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
32 | 0 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 |
0 | 0 | 23 | 32 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
9 | 25 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 39 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 6 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
37 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 39 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,35,6,0,0,0,0,35,40],[9,5,0,0,0,0,25,32,0,0,0,0,0,0,40,2,0,0,0,0,40,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,9,23,0,0,0,0,0,32,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[9,0,0,0,0,0,25,32,0,0,0,0,0,0,1,39,0,0,0,0,0,40,0,0,0,0,0,0,1,6,0,0,0,0,0,40],[1,37,0,0,0,0,0,40,0,0,0,0,0,0,1,39,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
C10.642+ 1+4 in GAP, Magma, Sage, TeX
C_{10}._{64}2_+^{1+4}
% in TeX
G:=Group("C10.64ES+(2,2)");
// GroupNames label
G:=SmallGroup(320,1333);
// by ID
G=gap.SmallGroup(320,1333);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,219,184,1571,297,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^10=b^4=e^2=1,c^2=a^5,d^2=a^5*b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c^-1=b^-1,d*b*d^-1=e*b*e=a^5*b,c*d=d*c,c*e=e*c,e*d*e=a^5*b^2*d>;
// generators/relations