metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C10.682- 1+4, C10.322+ 1+4, C4⋊D4⋊5D5, C4⋊C4.89D10, (C2×Dic5)⋊9D4, C20⋊7D4⋊43C2, C22.2(D4×D5), (C2×D4).89D10, C22⋊C4.4D10, D10⋊D4⋊16C2, D10⋊Q8⋊13C2, Dic5⋊D4⋊8C2, Dic5.85(C2×D4), C10.60(C22×D4), C23.8(C22×D5), (C2×C20).172C23, (C2×C10).141C24, (C2×D20).32C22, (C22×C4).217D10, C4⋊Dic5.44C22, C2.34(D4⋊6D10), (D4×C10).115C22, (C22×C10).12C23, (C22×D5).60C23, C22.162(C23×D5), Dic5.14D4⋊15C2, C23.D5.19C22, D10⋊C4.69C22, (C22×C20).310C22, C5⋊2(C22.31C24), (C2×Dic5).234C23, C2.26(D4.10D10), (C2×Dic10).157C22, C10.D4.158C22, (C22×Dic5).102C22, C2.33(C2×D4×D5), (C5×C4⋊D4)⋊6C2, (C2×C10).4(C2×D4), (C2×D4⋊2D5)⋊9C2, (C2×C4×D5).89C22, (C2×C4).35(C22×D5), (C2×C10.D4)⋊28C2, (C5×C4⋊C4).137C22, (C2×C5⋊D4).24C22, (C5×C22⋊C4).6C22, SmallGroup(320,1269)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C10.682- 1+4
G = < a,b,c,d,e | a10=b4=e2=1, c2=a5, d2=b2, ab=ba, cac-1=eae=a-1, ad=da, cbc-1=a5b-1, dbd-1=a5b, be=eb, dcd-1=ece=a5c, ede=a5b2d >
Subgroups: 1102 in 294 conjugacy classes, 103 normal (31 characteristic)
C1, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, D5, C10, C10, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, Dic5, Dic5, C20, D10, C2×C10, C2×C10, C2×C10, C2×C4⋊C4, C4⋊D4, C4⋊D4, C22⋊Q8, C2×C4○D4, Dic10, C4×D5, D20, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C2×C20, C5×D4, C22×D5, C22×C10, C22×C10, C22.31C24, C10.D4, C4⋊Dic5, D10⋊C4, C23.D5, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×D20, D4⋊2D5, C22×Dic5, C22×Dic5, C2×C5⋊D4, C22×C20, D4×C10, D4×C10, Dic5.14D4, D10⋊D4, D10⋊Q8, C2×C10.D4, C20⋊7D4, Dic5⋊D4, C5×C4⋊D4, C2×D4⋊2D5, C10.682- 1+4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C24, D10, C22×D4, 2+ 1+4, 2- 1+4, C22×D5, C22.31C24, D4×D5, C23×D5, C2×D4×D5, D4⋊6D10, D4.10D10, C10.682- 1+4
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 136 30 150)(2 137 21 141)(3 138 22 142)(4 139 23 143)(5 140 24 144)(6 131 25 145)(7 132 26 146)(8 133 27 147)(9 134 28 148)(10 135 29 149)(11 31 151 45)(12 32 152 46)(13 33 153 47)(14 34 154 48)(15 35 155 49)(16 36 156 50)(17 37 157 41)(18 38 158 42)(19 39 159 43)(20 40 160 44)(51 91 65 105)(52 92 66 106)(53 93 67 107)(54 94 68 108)(55 95 69 109)(56 96 70 110)(57 97 61 101)(58 98 62 102)(59 99 63 103)(60 100 64 104)(71 111 85 125)(72 112 86 126)(73 113 87 127)(74 114 88 128)(75 115 89 129)(76 116 90 130)(77 117 81 121)(78 118 82 122)(79 119 83 123)(80 120 84 124)
(1 45 6 50)(2 44 7 49)(3 43 8 48)(4 42 9 47)(5 41 10 46)(11 150 16 145)(12 149 17 144)(13 148 18 143)(14 147 19 142)(15 146 20 141)(21 40 26 35)(22 39 27 34)(23 38 28 33)(24 37 29 32)(25 36 30 31)(51 71 56 76)(52 80 57 75)(53 79 58 74)(54 78 59 73)(55 77 60 72)(61 89 66 84)(62 88 67 83)(63 87 68 82)(64 86 69 81)(65 85 70 90)(91 130 96 125)(92 129 97 124)(93 128 98 123)(94 127 99 122)(95 126 100 121)(101 120 106 115)(102 119 107 114)(103 118 108 113)(104 117 109 112)(105 116 110 111)(131 151 136 156)(132 160 137 155)(133 159 138 154)(134 158 139 153)(135 157 140 152)
(1 125 30 111)(2 126 21 112)(3 127 22 113)(4 128 23 114)(5 129 24 115)(6 130 25 116)(7 121 26 117)(8 122 27 118)(9 123 28 119)(10 124 29 120)(11 65 151 51)(12 66 152 52)(13 67 153 53)(14 68 154 54)(15 69 155 55)(16 70 156 56)(17 61 157 57)(18 62 158 58)(19 63 159 59)(20 64 160 60)(31 110 45 96)(32 101 46 97)(33 102 47 98)(34 103 48 99)(35 104 49 100)(36 105 50 91)(37 106 41 92)(38 107 42 93)(39 108 43 94)(40 109 44 95)(71 145 85 131)(72 146 86 132)(73 147 87 133)(74 148 88 134)(75 149 89 135)(76 150 90 136)(77 141 81 137)(78 142 82 138)(79 143 83 139)(80 144 84 140)
(1 30)(2 29)(3 28)(4 27)(5 26)(6 25)(7 24)(8 23)(9 22)(10 21)(11 156)(12 155)(13 154)(14 153)(15 152)(16 151)(17 160)(18 159)(19 158)(20 157)(31 50)(32 49)(33 48)(34 47)(35 46)(36 45)(37 44)(38 43)(39 42)(40 41)(52 60)(53 59)(54 58)(55 57)(61 69)(62 68)(63 67)(64 66)(71 76)(72 75)(73 74)(77 80)(78 79)(81 84)(82 83)(85 90)(86 89)(87 88)(92 100)(93 99)(94 98)(95 97)(101 109)(102 108)(103 107)(104 106)(111 116)(112 115)(113 114)(117 120)(118 119)(121 124)(122 123)(125 130)(126 129)(127 128)(131 145)(132 144)(133 143)(134 142)(135 141)(136 150)(137 149)(138 148)(139 147)(140 146)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,136,30,150)(2,137,21,141)(3,138,22,142)(4,139,23,143)(5,140,24,144)(6,131,25,145)(7,132,26,146)(8,133,27,147)(9,134,28,148)(10,135,29,149)(11,31,151,45)(12,32,152,46)(13,33,153,47)(14,34,154,48)(15,35,155,49)(16,36,156,50)(17,37,157,41)(18,38,158,42)(19,39,159,43)(20,40,160,44)(51,91,65,105)(52,92,66,106)(53,93,67,107)(54,94,68,108)(55,95,69,109)(56,96,70,110)(57,97,61,101)(58,98,62,102)(59,99,63,103)(60,100,64,104)(71,111,85,125)(72,112,86,126)(73,113,87,127)(74,114,88,128)(75,115,89,129)(76,116,90,130)(77,117,81,121)(78,118,82,122)(79,119,83,123)(80,120,84,124), (1,45,6,50)(2,44,7,49)(3,43,8,48)(4,42,9,47)(5,41,10,46)(11,150,16,145)(12,149,17,144)(13,148,18,143)(14,147,19,142)(15,146,20,141)(21,40,26,35)(22,39,27,34)(23,38,28,33)(24,37,29,32)(25,36,30,31)(51,71,56,76)(52,80,57,75)(53,79,58,74)(54,78,59,73)(55,77,60,72)(61,89,66,84)(62,88,67,83)(63,87,68,82)(64,86,69,81)(65,85,70,90)(91,130,96,125)(92,129,97,124)(93,128,98,123)(94,127,99,122)(95,126,100,121)(101,120,106,115)(102,119,107,114)(103,118,108,113)(104,117,109,112)(105,116,110,111)(131,151,136,156)(132,160,137,155)(133,159,138,154)(134,158,139,153)(135,157,140,152), (1,125,30,111)(2,126,21,112)(3,127,22,113)(4,128,23,114)(5,129,24,115)(6,130,25,116)(7,121,26,117)(8,122,27,118)(9,123,28,119)(10,124,29,120)(11,65,151,51)(12,66,152,52)(13,67,153,53)(14,68,154,54)(15,69,155,55)(16,70,156,56)(17,61,157,57)(18,62,158,58)(19,63,159,59)(20,64,160,60)(31,110,45,96)(32,101,46,97)(33,102,47,98)(34,103,48,99)(35,104,49,100)(36,105,50,91)(37,106,41,92)(38,107,42,93)(39,108,43,94)(40,109,44,95)(71,145,85,131)(72,146,86,132)(73,147,87,133)(74,148,88,134)(75,149,89,135)(76,150,90,136)(77,141,81,137)(78,142,82,138)(79,143,83,139)(80,144,84,140), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,156)(12,155)(13,154)(14,153)(15,152)(16,151)(17,160)(18,159)(19,158)(20,157)(31,50)(32,49)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,42)(40,41)(52,60)(53,59)(54,58)(55,57)(61,69)(62,68)(63,67)(64,66)(71,76)(72,75)(73,74)(77,80)(78,79)(81,84)(82,83)(85,90)(86,89)(87,88)(92,100)(93,99)(94,98)(95,97)(101,109)(102,108)(103,107)(104,106)(111,116)(112,115)(113,114)(117,120)(118,119)(121,124)(122,123)(125,130)(126,129)(127,128)(131,145)(132,144)(133,143)(134,142)(135,141)(136,150)(137,149)(138,148)(139,147)(140,146)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,136,30,150)(2,137,21,141)(3,138,22,142)(4,139,23,143)(5,140,24,144)(6,131,25,145)(7,132,26,146)(8,133,27,147)(9,134,28,148)(10,135,29,149)(11,31,151,45)(12,32,152,46)(13,33,153,47)(14,34,154,48)(15,35,155,49)(16,36,156,50)(17,37,157,41)(18,38,158,42)(19,39,159,43)(20,40,160,44)(51,91,65,105)(52,92,66,106)(53,93,67,107)(54,94,68,108)(55,95,69,109)(56,96,70,110)(57,97,61,101)(58,98,62,102)(59,99,63,103)(60,100,64,104)(71,111,85,125)(72,112,86,126)(73,113,87,127)(74,114,88,128)(75,115,89,129)(76,116,90,130)(77,117,81,121)(78,118,82,122)(79,119,83,123)(80,120,84,124), (1,45,6,50)(2,44,7,49)(3,43,8,48)(4,42,9,47)(5,41,10,46)(11,150,16,145)(12,149,17,144)(13,148,18,143)(14,147,19,142)(15,146,20,141)(21,40,26,35)(22,39,27,34)(23,38,28,33)(24,37,29,32)(25,36,30,31)(51,71,56,76)(52,80,57,75)(53,79,58,74)(54,78,59,73)(55,77,60,72)(61,89,66,84)(62,88,67,83)(63,87,68,82)(64,86,69,81)(65,85,70,90)(91,130,96,125)(92,129,97,124)(93,128,98,123)(94,127,99,122)(95,126,100,121)(101,120,106,115)(102,119,107,114)(103,118,108,113)(104,117,109,112)(105,116,110,111)(131,151,136,156)(132,160,137,155)(133,159,138,154)(134,158,139,153)(135,157,140,152), (1,125,30,111)(2,126,21,112)(3,127,22,113)(4,128,23,114)(5,129,24,115)(6,130,25,116)(7,121,26,117)(8,122,27,118)(9,123,28,119)(10,124,29,120)(11,65,151,51)(12,66,152,52)(13,67,153,53)(14,68,154,54)(15,69,155,55)(16,70,156,56)(17,61,157,57)(18,62,158,58)(19,63,159,59)(20,64,160,60)(31,110,45,96)(32,101,46,97)(33,102,47,98)(34,103,48,99)(35,104,49,100)(36,105,50,91)(37,106,41,92)(38,107,42,93)(39,108,43,94)(40,109,44,95)(71,145,85,131)(72,146,86,132)(73,147,87,133)(74,148,88,134)(75,149,89,135)(76,150,90,136)(77,141,81,137)(78,142,82,138)(79,143,83,139)(80,144,84,140), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,156)(12,155)(13,154)(14,153)(15,152)(16,151)(17,160)(18,159)(19,158)(20,157)(31,50)(32,49)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,42)(40,41)(52,60)(53,59)(54,58)(55,57)(61,69)(62,68)(63,67)(64,66)(71,76)(72,75)(73,74)(77,80)(78,79)(81,84)(82,83)(85,90)(86,89)(87,88)(92,100)(93,99)(94,98)(95,97)(101,109)(102,108)(103,107)(104,106)(111,116)(112,115)(113,114)(117,120)(118,119)(121,124)(122,123)(125,130)(126,129)(127,128)(131,145)(132,144)(133,143)(134,142)(135,141)(136,150)(137,149)(138,148)(139,147)(140,146) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,136,30,150),(2,137,21,141),(3,138,22,142),(4,139,23,143),(5,140,24,144),(6,131,25,145),(7,132,26,146),(8,133,27,147),(9,134,28,148),(10,135,29,149),(11,31,151,45),(12,32,152,46),(13,33,153,47),(14,34,154,48),(15,35,155,49),(16,36,156,50),(17,37,157,41),(18,38,158,42),(19,39,159,43),(20,40,160,44),(51,91,65,105),(52,92,66,106),(53,93,67,107),(54,94,68,108),(55,95,69,109),(56,96,70,110),(57,97,61,101),(58,98,62,102),(59,99,63,103),(60,100,64,104),(71,111,85,125),(72,112,86,126),(73,113,87,127),(74,114,88,128),(75,115,89,129),(76,116,90,130),(77,117,81,121),(78,118,82,122),(79,119,83,123),(80,120,84,124)], [(1,45,6,50),(2,44,7,49),(3,43,8,48),(4,42,9,47),(5,41,10,46),(11,150,16,145),(12,149,17,144),(13,148,18,143),(14,147,19,142),(15,146,20,141),(21,40,26,35),(22,39,27,34),(23,38,28,33),(24,37,29,32),(25,36,30,31),(51,71,56,76),(52,80,57,75),(53,79,58,74),(54,78,59,73),(55,77,60,72),(61,89,66,84),(62,88,67,83),(63,87,68,82),(64,86,69,81),(65,85,70,90),(91,130,96,125),(92,129,97,124),(93,128,98,123),(94,127,99,122),(95,126,100,121),(101,120,106,115),(102,119,107,114),(103,118,108,113),(104,117,109,112),(105,116,110,111),(131,151,136,156),(132,160,137,155),(133,159,138,154),(134,158,139,153),(135,157,140,152)], [(1,125,30,111),(2,126,21,112),(3,127,22,113),(4,128,23,114),(5,129,24,115),(6,130,25,116),(7,121,26,117),(8,122,27,118),(9,123,28,119),(10,124,29,120),(11,65,151,51),(12,66,152,52),(13,67,153,53),(14,68,154,54),(15,69,155,55),(16,70,156,56),(17,61,157,57),(18,62,158,58),(19,63,159,59),(20,64,160,60),(31,110,45,96),(32,101,46,97),(33,102,47,98),(34,103,48,99),(35,104,49,100),(36,105,50,91),(37,106,41,92),(38,107,42,93),(39,108,43,94),(40,109,44,95),(71,145,85,131),(72,146,86,132),(73,147,87,133),(74,148,88,134),(75,149,89,135),(76,150,90,136),(77,141,81,137),(78,142,82,138),(79,143,83,139),(80,144,84,140)], [(1,30),(2,29),(3,28),(4,27),(5,26),(6,25),(7,24),(8,23),(9,22),(10,21),(11,156),(12,155),(13,154),(14,153),(15,152),(16,151),(17,160),(18,159),(19,158),(20,157),(31,50),(32,49),(33,48),(34,47),(35,46),(36,45),(37,44),(38,43),(39,42),(40,41),(52,60),(53,59),(54,58),(55,57),(61,69),(62,68),(63,67),(64,66),(71,76),(72,75),(73,74),(77,80),(78,79),(81,84),(82,83),(85,90),(86,89),(87,88),(92,100),(93,99),(94,98),(95,97),(101,109),(102,108),(103,107),(104,106),(111,116),(112,115),(113,114),(117,120),(118,119),(121,124),(122,123),(125,130),(126,129),(127,128),(131,145),(132,144),(133,143),(134,142),(135,141),(136,150),(137,149),(138,148),(139,147),(140,146)]])
50 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 5A | 5B | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 10K | 10L | 10M | 10N | 20A | ··· | 20H | 20I | 20J | 20K | 20L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | 20 | 20 | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 20 | 20 | 4 | 4 | 4 | 4 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D5 | D10 | D10 | D10 | D10 | 2+ 1+4 | 2- 1+4 | D4×D5 | D4⋊6D10 | D4.10D10 |
kernel | C10.682- 1+4 | Dic5.14D4 | D10⋊D4 | D10⋊Q8 | C2×C10.D4 | C20⋊7D4 | Dic5⋊D4 | C5×C4⋊D4 | C2×D4⋊2D5 | C2×Dic5 | C4⋊D4 | C22⋊C4 | C4⋊C4 | C22×C4 | C2×D4 | C10 | C10 | C22 | C2 | C2 |
# reps | 1 | 2 | 2 | 2 | 1 | 1 | 4 | 1 | 2 | 4 | 2 | 4 | 2 | 2 | 6 | 1 | 1 | 4 | 4 | 4 |
Matrix representation of C10.682- 1+4 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 6 | 0 | 0 |
0 | 0 | 35 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 6 |
0 | 0 | 0 | 0 | 35 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
1 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 39 | 28 |
0 | 0 | 0 | 0 | 13 | 2 |
0 | 0 | 39 | 28 | 0 | 0 |
0 | 0 | 13 | 2 | 0 | 0 |
40 | 2 | 0 | 0 | 0 | 0 |
40 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 35 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 6 | 40 | 0 | 0 |
40 | 2 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 34 | 0 | 28 | 18 |
0 | 0 | 0 | 34 | 23 | 13 |
0 | 0 | 13 | 23 | 7 | 0 |
0 | 0 | 18 | 28 | 0 | 7 |
1 | 0 | 0 | 0 | 0 | 0 |
1 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 35 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 6 | 40 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,6,35,0,0,0,0,6,1,0,0,0,0,0,0,6,35,0,0,0,0,6,1],[1,1,0,0,0,0,0,40,0,0,0,0,0,0,0,0,39,13,0,0,0,0,28,2,0,0,39,13,0,0,0,0,28,2,0,0],[40,40,0,0,0,0,2,1,0,0,0,0,0,0,0,0,1,6,0,0,0,0,0,40,0,0,40,35,0,0,0,0,0,1,0,0],[40,0,0,0,0,0,2,1,0,0,0,0,0,0,34,0,13,18,0,0,0,34,23,28,0,0,28,23,7,0,0,0,18,13,0,7],[1,1,0,0,0,0,0,40,0,0,0,0,0,0,40,35,0,0,0,0,0,1,0,0,0,0,0,0,1,6,0,0,0,0,0,40] >;
C10.682- 1+4 in GAP, Magma, Sage, TeX
C_{10}._{68}2_-^{1+4}
% in TeX
G:=Group("C10.68ES-(2,2)");
// GroupNames label
G:=SmallGroup(320,1269);
// by ID
G=gap.SmallGroup(320,1269);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,387,1123,570,185,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^10=b^4=e^2=1,c^2=a^5,d^2=b^2,a*b=b*a,c*a*c^-1=e*a*e=a^-1,a*d=d*a,c*b*c^-1=a^5*b^-1,d*b*d^-1=a^5*b,b*e=e*b,d*c*d^-1=e*c*e=a^5*c,e*d*e=a^5*b^2*d>;
// generators/relations