Copied to
clipboard

G = C20⋊(C4○D4)  order 320 = 26·5

2nd semidirect product of C20 and C4○D4 acting via C4○D4/C22=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C20⋊Q818C2, C209(C4○D4), C4⋊D425D5, C20⋊D414C2, C207D431C2, C43(D42D5), C22.1(D4×D5), C4⋊C4.175D10, (D4×Dic5)⋊14C2, (C2×Dic5)⋊13D4, D208C419C2, Dic52(C4○D4), Dic5⋊D47C2, Dic54D45C2, (C2×D4).150D10, (C2×C20).34C23, C22⋊C4.45D10, Dic5.17(C2×D4), C10.59(C22×D4), (C2×C10).140C24, (C22×C4).366D10, Dic5.5D416C2, (D4×C10).114C22, (C2×D20).147C22, C4⋊Dic5.203C22, (C22×C10).11C23, C53(C22.26C24), (C22×D5).59C23, C22.161(C23×D5), C23.178(C22×D5), C23.D5.18C22, D10⋊C4.57C22, (C22×C20).235C22, (C4×Dic5).285C22, (C2×Dic5).233C23, C10.D4.12C22, (C2×Dic10).156C22, (C22×Dic5).244C22, C2.32(C2×D4×D5), (C2×C4×Dic5)⋊7C2, (C5×C4⋊D4)⋊5C2, C2.33(D5×C4○D4), (C2×C10).3(C2×D4), (C2×D42D5)⋊8C2, C10.79(C2×C4○D4), (C2×C4×D5).88C22, C2.30(C2×D42D5), (C2×C4).34(C22×D5), (C5×C4⋊C4).136C22, (C2×C5⋊D4).23C22, (C5×C22⋊C4).5C22, SmallGroup(320,1268)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C20⋊(C4○D4)
C1C5C10C2×C10C2×Dic5C22×Dic5C2×D42D5 — C20⋊(C4○D4)
C5C2×C10 — C20⋊(C4○D4)
C1C22C4⋊D4

Generators and relations for C20⋊(C4○D4)
 G = < a,b,c,d | a20=b4=d2=1, c2=b2, bab-1=a9, cac-1=a11, ad=da, bc=cb, bd=db, dcd=b2c >

Subgroups: 1102 in 310 conjugacy classes, 109 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, D5, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, Dic5, Dic5, C20, C20, D10, C2×C10, C2×C10, C2×C10, C2×C42, C4×D4, C4⋊D4, C4⋊D4, C4.4D4, C41D4, C4⋊Q8, C2×C4○D4, Dic10, C4×D5, D20, C2×Dic5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C2×C20, C5×D4, C22×D5, C22×C10, C22×C10, C22.26C24, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, C23.D5, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×D20, D42D5, C22×Dic5, C22×Dic5, C2×C5⋊D4, C22×C20, D4×C10, D4×C10, Dic54D4, Dic5.5D4, C20⋊Q8, D208C4, C2×C4×Dic5, C207D4, D4×Dic5, Dic5⋊D4, C20⋊D4, C5×C4⋊D4, C2×D42D5, C20⋊(C4○D4)
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, C24, D10, C22×D4, C2×C4○D4, C22×D5, C22.26C24, D4×D5, D42D5, C23×D5, C2×D4×D5, C2×D42D5, D5×C4○D4, C20⋊(C4○D4)

Smallest permutation representation of C20⋊(C4○D4)
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 95 46 26)(2 84 47 35)(3 93 48 24)(4 82 49 33)(5 91 50 22)(6 100 51 31)(7 89 52 40)(8 98 53 29)(9 87 54 38)(10 96 55 27)(11 85 56 36)(12 94 57 25)(13 83 58 34)(14 92 59 23)(15 81 60 32)(16 90 41 21)(17 99 42 30)(18 88 43 39)(19 97 44 28)(20 86 45 37)(61 123 114 159)(62 132 115 148)(63 121 116 157)(64 130 117 146)(65 139 118 155)(66 128 119 144)(67 137 120 153)(68 126 101 142)(69 135 102 151)(70 124 103 160)(71 133 104 149)(72 122 105 158)(73 131 106 147)(74 140 107 156)(75 129 108 145)(76 138 109 154)(77 127 110 143)(78 136 111 152)(79 125 112 141)(80 134 113 150)
(1 26 46 95)(2 37 47 86)(3 28 48 97)(4 39 49 88)(5 30 50 99)(6 21 51 90)(7 32 52 81)(8 23 53 92)(9 34 54 83)(10 25 55 94)(11 36 56 85)(12 27 57 96)(13 38 58 87)(14 29 59 98)(15 40 60 89)(16 31 41 100)(17 22 42 91)(18 33 43 82)(19 24 44 93)(20 35 45 84)(61 131 114 147)(62 122 115 158)(63 133 116 149)(64 124 117 160)(65 135 118 151)(66 126 119 142)(67 137 120 153)(68 128 101 144)(69 139 102 155)(70 130 103 146)(71 121 104 157)(72 132 105 148)(73 123 106 159)(74 134 107 150)(75 125 108 141)(76 136 109 152)(77 127 110 143)(78 138 111 154)(79 129 112 145)(80 140 113 156)
(1 137)(2 138)(3 139)(4 140)(5 121)(6 122)(7 123)(8 124)(9 125)(10 126)(11 127)(12 128)(13 129)(14 130)(15 131)(16 132)(17 133)(18 134)(19 135)(20 136)(21 62)(22 63)(23 64)(24 65)(25 66)(26 67)(27 68)(28 69)(29 70)(30 71)(31 72)(32 73)(33 74)(34 75)(35 76)(36 77)(37 78)(38 79)(39 80)(40 61)(41 148)(42 149)(43 150)(44 151)(45 152)(46 153)(47 154)(48 155)(49 156)(50 157)(51 158)(52 159)(53 160)(54 141)(55 142)(56 143)(57 144)(58 145)(59 146)(60 147)(81 106)(82 107)(83 108)(84 109)(85 110)(86 111)(87 112)(88 113)(89 114)(90 115)(91 116)(92 117)(93 118)(94 119)(95 120)(96 101)(97 102)(98 103)(99 104)(100 105)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,95,46,26)(2,84,47,35)(3,93,48,24)(4,82,49,33)(5,91,50,22)(6,100,51,31)(7,89,52,40)(8,98,53,29)(9,87,54,38)(10,96,55,27)(11,85,56,36)(12,94,57,25)(13,83,58,34)(14,92,59,23)(15,81,60,32)(16,90,41,21)(17,99,42,30)(18,88,43,39)(19,97,44,28)(20,86,45,37)(61,123,114,159)(62,132,115,148)(63,121,116,157)(64,130,117,146)(65,139,118,155)(66,128,119,144)(67,137,120,153)(68,126,101,142)(69,135,102,151)(70,124,103,160)(71,133,104,149)(72,122,105,158)(73,131,106,147)(74,140,107,156)(75,129,108,145)(76,138,109,154)(77,127,110,143)(78,136,111,152)(79,125,112,141)(80,134,113,150), (1,26,46,95)(2,37,47,86)(3,28,48,97)(4,39,49,88)(5,30,50,99)(6,21,51,90)(7,32,52,81)(8,23,53,92)(9,34,54,83)(10,25,55,94)(11,36,56,85)(12,27,57,96)(13,38,58,87)(14,29,59,98)(15,40,60,89)(16,31,41,100)(17,22,42,91)(18,33,43,82)(19,24,44,93)(20,35,45,84)(61,131,114,147)(62,122,115,158)(63,133,116,149)(64,124,117,160)(65,135,118,151)(66,126,119,142)(67,137,120,153)(68,128,101,144)(69,139,102,155)(70,130,103,146)(71,121,104,157)(72,132,105,148)(73,123,106,159)(74,134,107,150)(75,125,108,141)(76,136,109,152)(77,127,110,143)(78,138,111,154)(79,129,112,145)(80,140,113,156), (1,137)(2,138)(3,139)(4,140)(5,121)(6,122)(7,123)(8,124)(9,125)(10,126)(11,127)(12,128)(13,129)(14,130)(15,131)(16,132)(17,133)(18,134)(19,135)(20,136)(21,62)(22,63)(23,64)(24,65)(25,66)(26,67)(27,68)(28,69)(29,70)(30,71)(31,72)(32,73)(33,74)(34,75)(35,76)(36,77)(37,78)(38,79)(39,80)(40,61)(41,148)(42,149)(43,150)(44,151)(45,152)(46,153)(47,154)(48,155)(49,156)(50,157)(51,158)(52,159)(53,160)(54,141)(55,142)(56,143)(57,144)(58,145)(59,146)(60,147)(81,106)(82,107)(83,108)(84,109)(85,110)(86,111)(87,112)(88,113)(89,114)(90,115)(91,116)(92,117)(93,118)(94,119)(95,120)(96,101)(97,102)(98,103)(99,104)(100,105)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,95,46,26)(2,84,47,35)(3,93,48,24)(4,82,49,33)(5,91,50,22)(6,100,51,31)(7,89,52,40)(8,98,53,29)(9,87,54,38)(10,96,55,27)(11,85,56,36)(12,94,57,25)(13,83,58,34)(14,92,59,23)(15,81,60,32)(16,90,41,21)(17,99,42,30)(18,88,43,39)(19,97,44,28)(20,86,45,37)(61,123,114,159)(62,132,115,148)(63,121,116,157)(64,130,117,146)(65,139,118,155)(66,128,119,144)(67,137,120,153)(68,126,101,142)(69,135,102,151)(70,124,103,160)(71,133,104,149)(72,122,105,158)(73,131,106,147)(74,140,107,156)(75,129,108,145)(76,138,109,154)(77,127,110,143)(78,136,111,152)(79,125,112,141)(80,134,113,150), (1,26,46,95)(2,37,47,86)(3,28,48,97)(4,39,49,88)(5,30,50,99)(6,21,51,90)(7,32,52,81)(8,23,53,92)(9,34,54,83)(10,25,55,94)(11,36,56,85)(12,27,57,96)(13,38,58,87)(14,29,59,98)(15,40,60,89)(16,31,41,100)(17,22,42,91)(18,33,43,82)(19,24,44,93)(20,35,45,84)(61,131,114,147)(62,122,115,158)(63,133,116,149)(64,124,117,160)(65,135,118,151)(66,126,119,142)(67,137,120,153)(68,128,101,144)(69,139,102,155)(70,130,103,146)(71,121,104,157)(72,132,105,148)(73,123,106,159)(74,134,107,150)(75,125,108,141)(76,136,109,152)(77,127,110,143)(78,138,111,154)(79,129,112,145)(80,140,113,156), (1,137)(2,138)(3,139)(4,140)(5,121)(6,122)(7,123)(8,124)(9,125)(10,126)(11,127)(12,128)(13,129)(14,130)(15,131)(16,132)(17,133)(18,134)(19,135)(20,136)(21,62)(22,63)(23,64)(24,65)(25,66)(26,67)(27,68)(28,69)(29,70)(30,71)(31,72)(32,73)(33,74)(34,75)(35,76)(36,77)(37,78)(38,79)(39,80)(40,61)(41,148)(42,149)(43,150)(44,151)(45,152)(46,153)(47,154)(48,155)(49,156)(50,157)(51,158)(52,159)(53,160)(54,141)(55,142)(56,143)(57,144)(58,145)(59,146)(60,147)(81,106)(82,107)(83,108)(84,109)(85,110)(86,111)(87,112)(88,113)(89,114)(90,115)(91,116)(92,117)(93,118)(94,119)(95,120)(96,101)(97,102)(98,103)(99,104)(100,105) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,95,46,26),(2,84,47,35),(3,93,48,24),(4,82,49,33),(5,91,50,22),(6,100,51,31),(7,89,52,40),(8,98,53,29),(9,87,54,38),(10,96,55,27),(11,85,56,36),(12,94,57,25),(13,83,58,34),(14,92,59,23),(15,81,60,32),(16,90,41,21),(17,99,42,30),(18,88,43,39),(19,97,44,28),(20,86,45,37),(61,123,114,159),(62,132,115,148),(63,121,116,157),(64,130,117,146),(65,139,118,155),(66,128,119,144),(67,137,120,153),(68,126,101,142),(69,135,102,151),(70,124,103,160),(71,133,104,149),(72,122,105,158),(73,131,106,147),(74,140,107,156),(75,129,108,145),(76,138,109,154),(77,127,110,143),(78,136,111,152),(79,125,112,141),(80,134,113,150)], [(1,26,46,95),(2,37,47,86),(3,28,48,97),(4,39,49,88),(5,30,50,99),(6,21,51,90),(7,32,52,81),(8,23,53,92),(9,34,54,83),(10,25,55,94),(11,36,56,85),(12,27,57,96),(13,38,58,87),(14,29,59,98),(15,40,60,89),(16,31,41,100),(17,22,42,91),(18,33,43,82),(19,24,44,93),(20,35,45,84),(61,131,114,147),(62,122,115,158),(63,133,116,149),(64,124,117,160),(65,135,118,151),(66,126,119,142),(67,137,120,153),(68,128,101,144),(69,139,102,155),(70,130,103,146),(71,121,104,157),(72,132,105,148),(73,123,106,159),(74,134,107,150),(75,125,108,141),(76,136,109,152),(77,127,110,143),(78,138,111,154),(79,129,112,145),(80,140,113,156)], [(1,137),(2,138),(3,139),(4,140),(5,121),(6,122),(7,123),(8,124),(9,125),(10,126),(11,127),(12,128),(13,129),(14,130),(15,131),(16,132),(17,133),(18,134),(19,135),(20,136),(21,62),(22,63),(23,64),(24,65),(25,66),(26,67),(27,68),(28,69),(29,70),(30,71),(31,72),(32,73),(33,74),(34,75),(35,76),(36,77),(37,78),(38,79),(39,80),(40,61),(41,148),(42,149),(43,150),(44,151),(45,152),(46,153),(47,154),(48,155),(49,156),(50,157),(51,158),(52,159),(53,160),(54,141),(55,142),(56,143),(57,144),(58,145),(59,146),(60,147),(81,106),(82,107),(83,108),(84,109),(85,110),(86,111),(87,112),(88,113),(89,114),(90,115),(91,116),(92,117),(93,118),(94,119),(95,120),(96,101),(97,102),(98,103),(99,104),(100,105)]])

56 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J4K···4P4Q4R5A5B10A···10F10G10H10I10J10K10L10M10N20A···20H20I20J20K20L
order122222222244444444444···4445510···10101010101010101020···2020202020
size111122442020222244555510···102020222···2444488884···48888

56 irreducible representations

dim11111111111122222222444
type++++++++++++++++++-+
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D5C4○D4C4○D4D10D10D10D10D42D5D4×D5D5×C4○D4
kernelC20⋊(C4○D4)Dic54D4Dic5.5D4C20⋊Q8D208C4C2×C4×Dic5C207D4D4×Dic5Dic5⋊D4C20⋊D4C5×C4⋊D4C2×D42D5C2×Dic5C4⋊D4Dic5C20C22⋊C4C4⋊C4C22×C4C2×D4C4C22C2
# reps12211111211242444226444

Matrix representation of C20⋊(C4○D4) in GL6(𝔽41)

010000
40350000
00403900
001100
0000400
0000040
,
3560000
160000
009000
000900
0000320
0000032
,
4000000
0400000
0032000
009900
000090
0000132
,
4000000
0400000
0091800
00323200
000092
0000132

G:=sub<GL(6,GF(41))| [0,40,0,0,0,0,1,35,0,0,0,0,0,0,40,1,0,0,0,0,39,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[35,1,0,0,0,0,6,6,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,32,0,0,0,0,0,0,32],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,32,9,0,0,0,0,0,9,0,0,0,0,0,0,9,1,0,0,0,0,0,32],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,9,32,0,0,0,0,18,32,0,0,0,0,0,0,9,1,0,0,0,0,2,32] >;

C20⋊(C4○D4) in GAP, Magma, Sage, TeX

C_{20}\rtimes (C_4\circ D_4)
% in TeX

G:=Group("C20:(C4oD4)");
// GroupNames label

G:=SmallGroup(320,1268);
// by ID

G=gap.SmallGroup(320,1268);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,387,570,185,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^4=d^2=1,c^2=b^2,b*a*b^-1=a^9,c*a*c^-1=a^11,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=b^2*c>;
// generators/relations

׿
×
𝔽