Copied to
clipboard

G = C9⋊F7order 378 = 2·33·7

1st semidirect product of C9 and F7 acting via F7/C7=C6

metacyclic, supersoluble, monomial

Aliases: C91F7, C633C6, D633C3, C71(C9⋊C6), C633C31C2, C21.1(C3×S3), C3.1(C3⋊F7), (C3×C7⋊C3).1S3, SmallGroup(378,18)

Series: Derived Chief Lower central Upper central

C1C63 — C9⋊F7
C1C3C21C63C633C3 — C9⋊F7
C63 — C9⋊F7
C1

Generators and relations for C9⋊F7
 G = < a,b,c | a9=b7=c6=1, ab=ba, cac-1=a2, cbc-1=b5 >

63C2
21C3
21S3
63C6
7C32
14C9
9D7
3C7⋊C3
7D9
21C3×S3
73- 1+2
3D21
9F7
2C7⋊C9
7C9⋊C6
3C3⋊F7

Character table of C9⋊F7

 class 123A3B3C6A6B79A9B9C21A21B63A63B63C63D63E63F
 size 16322121636366424266666666
ρ11111111111111111111    trivial
ρ21-1111-1-1111111111111    linear of order 2
ρ3111ζ3ζ32ζ3ζ3211ζ32ζ311111111    linear of order 3
ρ41-11ζ3ζ32ζ65ζ611ζ32ζ311111111    linear of order 6
ρ51-11ζ32ζ3ζ6ζ6511ζ3ζ3211111111    linear of order 6
ρ6111ζ32ζ3ζ32ζ311ζ3ζ3211111111    linear of order 3
ρ720222002-1-1-122-1-1-1-1-1-1    orthogonal lifted from S3
ρ8202-1--3-1+-3002-1ζ65ζ622-1-1-1-1-1-1    complex lifted from C3×S3
ρ9202-1+-3-1--3002-1ζ6ζ6522-1-1-1-1-1-1    complex lifted from C3×S3
ρ106060000-1600-1-1-1-1-1-1-1-1    orthogonal lifted from F7
ρ1160-300006000-3-3000000    orthogonal lifted from C9⋊C6
ρ126060000-1-300-1-11-21/21+21/21+21/21-21/21+21/21-21/2    orthogonal lifted from C3⋊F7
ρ136060000-1-300-1-11+21/21-21/21-21/21+21/21-21/21+21/2    orthogonal lifted from C3⋊F7
ρ1460-30000-10001+21/21-21/295ζ7295ζ794ζ7594ζ74-2ζ94ζ7394ζ7294ζ79492ζ7492ζ729ζ759ζ7395ζ7695ζ7394ζ7694ζ7594ζ73-2ζ94ζ7294ζ79492ζ7692ζ759ζ729ζ798ζ76-2ζ98ζ7598ζ7498ζ7298ζ79894ζ7294ζ792ζ7692ζ759ζ749ζ7ζ97ζ7597ζ7395ζ7495ζ792ζ7692ζ7592ζ7492ζ73-2ζ92ζ7929ζ769ζ73-2ζ98ζ7698ζ7498ζ7398ζ7298ζ79894ζ7494ζ792ζ7692ζ739ζ749ζ72ζ98ζ7498ζ7297ζ7597ζ74-2ζ97ζ7397ζ7297ζ79794ζ7594ζ7392ζ7292ζ7    orthogonal faithful
ρ1560-30000-10001+21/21-21/2ζ97ζ7597ζ7395ζ7495ζ792ζ7692ζ7592ζ7492ζ73-2ζ92ζ7929ζ769ζ7398ζ76-2ζ98ζ7598ζ7498ζ7298ζ79894ζ7294ζ792ζ7692ζ759ζ749ζ7-2ζ98ζ7698ζ7498ζ7398ζ7298ζ79894ζ7494ζ792ζ7692ζ739ζ749ζ72ζ98ζ7498ζ7297ζ7597ζ74-2ζ97ζ7397ζ7297ζ79794ζ7594ζ7392ζ7292ζ795ζ7695ζ7394ζ7694ζ7594ζ73-2ζ94ζ7294ζ79492ζ7692ζ759ζ729ζ795ζ7295ζ794ζ7594ζ74-2ζ94ζ7394ζ7294ζ79492ζ7492ζ729ζ759ζ73    orthogonal faithful
ρ1660-30000-10001-21/21+21/2-2ζ98ζ7698ζ7498ζ7398ζ7298ζ79894ζ7494ζ792ζ7692ζ739ζ749ζ72ζ97ζ7597ζ7395ζ7495ζ792ζ7692ζ7592ζ7492ζ73-2ζ92ζ7929ζ769ζ73ζ98ζ7498ζ7297ζ7597ζ74-2ζ97ζ7397ζ7297ζ79794ζ7594ζ7392ζ7292ζ795ζ7695ζ7394ζ7694ζ7594ζ73-2ζ94ζ7294ζ79492ζ7692ζ759ζ729ζ795ζ7295ζ794ζ7594ζ74-2ζ94ζ7394ζ7294ζ79492ζ7492ζ729ζ759ζ7398ζ76-2ζ98ζ7598ζ7498ζ7298ζ79894ζ7294ζ792ζ7692ζ759ζ749ζ7    orthogonal faithful
ρ1760-30000-10001+21/21-21/2ζ98ζ7498ζ7297ζ7597ζ74-2ζ97ζ7397ζ7297ζ79794ζ7594ζ7392ζ7292ζ7-2ζ98ζ7698ζ7498ζ7398ζ7298ζ79894ζ7494ζ792ζ7692ζ739ζ749ζ7295ζ7695ζ7394ζ7694ζ7594ζ73-2ζ94ζ7294ζ79492ζ7692ζ759ζ729ζ795ζ7295ζ794ζ7594ζ74-2ζ94ζ7394ζ7294ζ79492ζ7492ζ729ζ759ζ7398ζ76-2ζ98ζ7598ζ7498ζ7298ζ79894ζ7294ζ792ζ7692ζ759ζ749ζ7ζ97ζ7597ζ7395ζ7495ζ792ζ7692ζ7592ζ7492ζ73-2ζ92ζ7929ζ769ζ73    orthogonal faithful
ρ1860-30000-10001-21/21+21/295ζ7695ζ7394ζ7694ζ7594ζ73-2ζ94ζ7294ζ79492ζ7692ζ759ζ729ζ7ζ98ζ7498ζ7297ζ7597ζ74-2ζ97ζ7397ζ7297ζ79794ζ7594ζ7392ζ7292ζ795ζ7295ζ794ζ7594ζ74-2ζ94ζ7394ζ7294ζ79492ζ7492ζ729ζ759ζ7398ζ76-2ζ98ζ7598ζ7498ζ7298ζ79894ζ7294ζ792ζ7692ζ759ζ749ζ7ζ97ζ7597ζ7395ζ7495ζ792ζ7692ζ7592ζ7492ζ73-2ζ92ζ7929ζ769ζ73-2ζ98ζ7698ζ7498ζ7398ζ7298ζ79894ζ7494ζ792ζ7692ζ739ζ749ζ72    orthogonal faithful
ρ1960-30000-10001-21/21+21/298ζ76-2ζ98ζ7598ζ7498ζ7298ζ79894ζ7294ζ792ζ7692ζ759ζ749ζ795ζ7295ζ794ζ7594ζ74-2ζ94ζ7394ζ7294ζ79492ζ7492ζ729ζ759ζ73ζ97ζ7597ζ7395ζ7495ζ792ζ7692ζ7592ζ7492ζ73-2ζ92ζ7929ζ769ζ73-2ζ98ζ7698ζ7498ζ7398ζ7298ζ79894ζ7494ζ792ζ7692ζ739ζ749ζ72ζ98ζ7498ζ7297ζ7597ζ74-2ζ97ζ7397ζ7297ζ79794ζ7594ζ7392ζ7292ζ795ζ7695ζ7394ζ7694ζ7594ζ73-2ζ94ζ7294ζ79492ζ7692ζ759ζ729ζ7    orthogonal faithful

Smallest permutation representation of C9⋊F7
On 63 points
Generators in S63
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)
(1 30 14 26 56 52 45)(2 31 15 27 57 53 37)(3 32 16 19 58 54 38)(4 33 17 20 59 46 39)(5 34 18 21 60 47 40)(6 35 10 22 61 48 41)(7 36 11 23 62 49 42)(8 28 12 24 63 50 43)(9 29 13 25 55 51 44)
(2 6 8 9 5 3)(4 7)(10 43 55 47 32 27)(11 39 62 46 36 20)(12 44 60 54 31 22)(13 40 58 53 35 24)(14 45 56 52 30 26)(15 41 63 51 34 19)(16 37 61 50 29 21)(17 42 59 49 33 23)(18 38 57 48 28 25)

G:=sub<Sym(63)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63), (1,30,14,26,56,52,45)(2,31,15,27,57,53,37)(3,32,16,19,58,54,38)(4,33,17,20,59,46,39)(5,34,18,21,60,47,40)(6,35,10,22,61,48,41)(7,36,11,23,62,49,42)(8,28,12,24,63,50,43)(9,29,13,25,55,51,44), (2,6,8,9,5,3)(4,7)(10,43,55,47,32,27)(11,39,62,46,36,20)(12,44,60,54,31,22)(13,40,58,53,35,24)(14,45,56,52,30,26)(15,41,63,51,34,19)(16,37,61,50,29,21)(17,42,59,49,33,23)(18,38,57,48,28,25)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63), (1,30,14,26,56,52,45)(2,31,15,27,57,53,37)(3,32,16,19,58,54,38)(4,33,17,20,59,46,39)(5,34,18,21,60,47,40)(6,35,10,22,61,48,41)(7,36,11,23,62,49,42)(8,28,12,24,63,50,43)(9,29,13,25,55,51,44), (2,6,8,9,5,3)(4,7)(10,43,55,47,32,27)(11,39,62,46,36,20)(12,44,60,54,31,22)(13,40,58,53,35,24)(14,45,56,52,30,26)(15,41,63,51,34,19)(16,37,61,50,29,21)(17,42,59,49,33,23)(18,38,57,48,28,25) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63)], [(1,30,14,26,56,52,45),(2,31,15,27,57,53,37),(3,32,16,19,58,54,38),(4,33,17,20,59,46,39),(5,34,18,21,60,47,40),(6,35,10,22,61,48,41),(7,36,11,23,62,49,42),(8,28,12,24,63,50,43),(9,29,13,25,55,51,44)], [(2,6,8,9,5,3),(4,7),(10,43,55,47,32,27),(11,39,62,46,36,20),(12,44,60,54,31,22),(13,40,58,53,35,24),(14,45,56,52,30,26),(15,41,63,51,34,19),(16,37,61,50,29,21),(17,42,59,49,33,23),(18,38,57,48,28,25)]])

Matrix representation of C9⋊F7 in GL6(𝔽127)

225745971582
707930154597
1582631047162
45972340656
71626564293
65612171348
,
8877897710
5038503901
100000
010000
001000
000100
,
010000
100000
012601265038
126012608877
0177897788
1039503850

G:=sub<GL(6,GF(127))| [22,70,15,45,71,65,57,79,82,97,62,6,45,30,63,23,65,121,97,15,104,40,6,71,15,45,71,65,42,34,82,97,62,6,93,8],[88,50,1,0,0,0,77,38,0,1,0,0,89,50,0,0,1,0,77,39,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0],[0,1,0,126,0,1,1,0,126,0,1,0,0,0,0,126,77,39,0,0,126,0,89,50,0,0,50,88,77,38,0,0,38,77,88,50] >;

C9⋊F7 in GAP, Magma, Sage, TeX

C_9\rtimes F_7
% in TeX

G:=Group("C9:F7");
// GroupNames label

G:=SmallGroup(378,18);
// by ID

G=gap.SmallGroup(378,18);
# by ID

G:=PCGroup([5,-2,-3,-3,-7,-3,2072,997,642,2163,368,6304]);
// Polycyclic

G:=Group<a,b,c|a^9=b^7=c^6=1,a*b=b*a,c*a*c^-1=a^2,c*b*c^-1=b^5>;
// generators/relations

Export

Subgroup lattice of C9⋊F7 in TeX
Character table of C9⋊F7 in TeX

׿
×
𝔽