Copied to
clipboard

G = D5×D21order 420 = 22·3·5·7

Direct product of D5 and D21

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D5×D21, C51D42, C352D6, C151D14, C214D10, D1052C2, C1052C22, (C7×D5)⋊S3, (C3×D5)⋊D7, C72(S3×D5), C31(D5×D7), (D5×C21)⋊1C2, (C5×D21)⋊1C2, SmallGroup(420,28)

Series: Derived Chief Lower central Upper central

C1C105 — D5×D21
C1C7C35C105C5×D21 — D5×D21
C105 — D5×D21
C1

Generators and relations for D5×D21
 G = < a,b,c,d | a5=b2=c21=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

5C2
21C2
105C2
105C22
5C6
7S3
35S3
21C10
21D5
3D7
5C14
15D7
35D6
21D10
15D14
7D15
7C5×S3
5D21
5C42
3C5×D7
3D35
7S3×D5
5D42
3D5×D7

Smallest permutation representation of D5×D21
On 105 points
Generators in S105
(1 53 40 90 72)(2 54 41 91 73)(3 55 42 92 74)(4 56 22 93 75)(5 57 23 94 76)(6 58 24 95 77)(7 59 25 96 78)(8 60 26 97 79)(9 61 27 98 80)(10 62 28 99 81)(11 63 29 100 82)(12 43 30 101 83)(13 44 31 102 84)(14 45 32 103 64)(15 46 33 104 65)(16 47 34 105 66)(17 48 35 85 67)(18 49 36 86 68)(19 50 37 87 69)(20 51 38 88 70)(21 52 39 89 71)
(1 72)(2 73)(3 74)(4 75)(5 76)(6 77)(7 78)(8 79)(9 80)(10 81)(11 82)(12 83)(13 84)(14 64)(15 65)(16 66)(17 67)(18 68)(19 69)(20 70)(21 71)(43 101)(44 102)(45 103)(46 104)(47 105)(48 85)(49 86)(50 87)(51 88)(52 89)(53 90)(54 91)(55 92)(56 93)(57 94)(58 95)(59 96)(60 97)(61 98)(62 99)(63 100)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)
(1 21)(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)(10 12)(22 36)(23 35)(24 34)(25 33)(26 32)(27 31)(28 30)(37 42)(38 41)(39 40)(43 62)(44 61)(45 60)(46 59)(47 58)(48 57)(49 56)(50 55)(51 54)(52 53)(64 79)(65 78)(66 77)(67 76)(68 75)(69 74)(70 73)(71 72)(80 84)(81 83)(85 94)(86 93)(87 92)(88 91)(89 90)(95 105)(96 104)(97 103)(98 102)(99 101)

G:=sub<Sym(105)| (1,53,40,90,72)(2,54,41,91,73)(3,55,42,92,74)(4,56,22,93,75)(5,57,23,94,76)(6,58,24,95,77)(7,59,25,96,78)(8,60,26,97,79)(9,61,27,98,80)(10,62,28,99,81)(11,63,29,100,82)(12,43,30,101,83)(13,44,31,102,84)(14,45,32,103,64)(15,46,33,104,65)(16,47,34,105,66)(17,48,35,85,67)(18,49,36,86,68)(19,50,37,87,69)(20,51,38,88,70)(21,52,39,89,71), (1,72)(2,73)(3,74)(4,75)(5,76)(6,77)(7,78)(8,79)(9,80)(10,81)(11,82)(12,83)(13,84)(14,64)(15,65)(16,66)(17,67)(18,68)(19,69)(20,70)(21,71)(43,101)(44,102)(45,103)(46,104)(47,105)(48,85)(49,86)(50,87)(51,88)(52,89)(53,90)(54,91)(55,92)(56,93)(57,94)(58,95)(59,96)(60,97)(61,98)(62,99)(63,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(22,36)(23,35)(24,34)(25,33)(26,32)(27,31)(28,30)(37,42)(38,41)(39,40)(43,62)(44,61)(45,60)(46,59)(47,58)(48,57)(49,56)(50,55)(51,54)(52,53)(64,79)(65,78)(66,77)(67,76)(68,75)(69,74)(70,73)(71,72)(80,84)(81,83)(85,94)(86,93)(87,92)(88,91)(89,90)(95,105)(96,104)(97,103)(98,102)(99,101)>;

G:=Group( (1,53,40,90,72)(2,54,41,91,73)(3,55,42,92,74)(4,56,22,93,75)(5,57,23,94,76)(6,58,24,95,77)(7,59,25,96,78)(8,60,26,97,79)(9,61,27,98,80)(10,62,28,99,81)(11,63,29,100,82)(12,43,30,101,83)(13,44,31,102,84)(14,45,32,103,64)(15,46,33,104,65)(16,47,34,105,66)(17,48,35,85,67)(18,49,36,86,68)(19,50,37,87,69)(20,51,38,88,70)(21,52,39,89,71), (1,72)(2,73)(3,74)(4,75)(5,76)(6,77)(7,78)(8,79)(9,80)(10,81)(11,82)(12,83)(13,84)(14,64)(15,65)(16,66)(17,67)(18,68)(19,69)(20,70)(21,71)(43,101)(44,102)(45,103)(46,104)(47,105)(48,85)(49,86)(50,87)(51,88)(52,89)(53,90)(54,91)(55,92)(56,93)(57,94)(58,95)(59,96)(60,97)(61,98)(62,99)(63,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(22,36)(23,35)(24,34)(25,33)(26,32)(27,31)(28,30)(37,42)(38,41)(39,40)(43,62)(44,61)(45,60)(46,59)(47,58)(48,57)(49,56)(50,55)(51,54)(52,53)(64,79)(65,78)(66,77)(67,76)(68,75)(69,74)(70,73)(71,72)(80,84)(81,83)(85,94)(86,93)(87,92)(88,91)(89,90)(95,105)(96,104)(97,103)(98,102)(99,101) );

G=PermutationGroup([[(1,53,40,90,72),(2,54,41,91,73),(3,55,42,92,74),(4,56,22,93,75),(5,57,23,94,76),(6,58,24,95,77),(7,59,25,96,78),(8,60,26,97,79),(9,61,27,98,80),(10,62,28,99,81),(11,63,29,100,82),(12,43,30,101,83),(13,44,31,102,84),(14,45,32,103,64),(15,46,33,104,65),(16,47,34,105,66),(17,48,35,85,67),(18,49,36,86,68),(19,50,37,87,69),(20,51,38,88,70),(21,52,39,89,71)], [(1,72),(2,73),(3,74),(4,75),(5,76),(6,77),(7,78),(8,79),(9,80),(10,81),(11,82),(12,83),(13,84),(14,64),(15,65),(16,66),(17,67),(18,68),(19,69),(20,70),(21,71),(43,101),(44,102),(45,103),(46,104),(47,105),(48,85),(49,86),(50,87),(51,88),(52,89),(53,90),(54,91),(55,92),(56,93),(57,94),(58,95),(59,96),(60,97),(61,98),(62,99),(63,100)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)], [(1,21),(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13),(10,12),(22,36),(23,35),(24,34),(25,33),(26,32),(27,31),(28,30),(37,42),(38,41),(39,40),(43,62),(44,61),(45,60),(46,59),(47,58),(48,57),(49,56),(50,55),(51,54),(52,53),(64,79),(65,78),(66,77),(67,76),(68,75),(69,74),(70,73),(71,72),(80,84),(81,83),(85,94),(86,93),(87,92),(88,91),(89,90),(95,105),(96,104),(97,103),(98,102),(99,101)]])

48 conjugacy classes

class 1 2A2B2C 3 5A5B 6 7A7B7C10A10B14A14B14C15A15B21A···21F35A···35F42A···42F105A···105L
order122235567771010141414151521···2135···3542···42105···105
size1521105222102224242101010442···24···410···104···4

48 irreducible representations

dim111122222222444
type+++++++++++++++
imageC1C2C2C2S3D5D6D7D10D14D21D42S3×D5D5×D7D5×D21
kernelD5×D21D5×C21C5×D21D105C7×D5D21C35C3×D5C21C15D5C5C7C3C1
# reps1111121323662612

Matrix representation of D5×D21 in GL4(𝔽211) generated by

1000
0100
0066132
00186177
,
1000
0100
0017779
0016734
,
18513200
792900
0010
0001
,
18513200
862600
0010
0001
G:=sub<GL(4,GF(211))| [1,0,0,0,0,1,0,0,0,0,66,186,0,0,132,177],[1,0,0,0,0,1,0,0,0,0,177,167,0,0,79,34],[185,79,0,0,132,29,0,0,0,0,1,0,0,0,0,1],[185,86,0,0,132,26,0,0,0,0,1,0,0,0,0,1] >;

D5×D21 in GAP, Magma, Sage, TeX

D_5\times D_{21}
% in TeX

G:=Group("D5xD21");
// GroupNames label

G:=SmallGroup(420,28);
// by ID

G=gap.SmallGroup(420,28);
# by ID

G:=PCGroup([5,-2,-2,-3,-5,-7,122,488,9004]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^2=c^21=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of D5×D21 in TeX

׿
×
𝔽