Copied to
clipboard

G = S3×C7×D5order 420 = 22·3·5·7

Direct product of C7, S3 and D5

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: S3×C7×D5, C356D6, D15⋊C14, C216D10, C1057C22, C15⋊(C2×C14), (C5×S3)⋊C14, C51(S3×C14), (C3×D5)⋊C14, C31(D5×C14), (S3×C35)⋊3C2, (D5×C21)⋊3C2, (C7×D15)⋊3C2, SmallGroup(420,27)

Series: Derived Chief Lower central Upper central

C1C15 — S3×C7×D5
C1C5C15C105D5×C21 — S3×C7×D5
C15 — S3×C7×D5
C1C7

Generators and relations for S3×C7×D5
 G = < a,b,c,d,e | a7=b3=c2=d5=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

3C2
5C2
15C2
15C22
5S3
5C6
3D5
3C10
3C14
5C14
15C14
5D6
3D10
15C2×C14
5S3×C7
5C42
3C7×D5
3C70
5S3×C14
3D5×C14

Smallest permutation representation of S3×C7×D5
On 105 points
Generators in S105
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)
(1 54 94)(2 55 95)(3 56 96)(4 50 97)(5 51 98)(6 52 92)(7 53 93)(8 39 58)(9 40 59)(10 41 60)(11 42 61)(12 36 62)(13 37 63)(14 38 57)(15 85 65)(16 86 66)(17 87 67)(18 88 68)(19 89 69)(20 90 70)(21 91 64)(22 100 43)(23 101 44)(24 102 45)(25 103 46)(26 104 47)(27 105 48)(28 99 49)(29 75 79)(30 76 80)(31 77 81)(32 71 82)(33 72 83)(34 73 84)(35 74 78)
(8 39)(9 40)(10 41)(11 42)(12 36)(13 37)(14 38)(15 85)(16 86)(17 87)(18 88)(19 89)(20 90)(21 91)(22 43)(23 44)(24 45)(25 46)(26 47)(27 48)(28 49)(29 75)(30 76)(31 77)(32 71)(33 72)(34 73)(35 74)(50 97)(51 98)(52 92)(53 93)(54 94)(55 95)(56 96)
(1 70 79 102 59)(2 64 80 103 60)(3 65 81 104 61)(4 66 82 105 62)(5 67 83 99 63)(6 68 84 100 57)(7 69 78 101 58)(8 53 19 35 44)(9 54 20 29 45)(10 55 21 30 46)(11 56 15 31 47)(12 50 16 32 48)(13 51 17 33 49)(14 52 18 34 43)(22 38 92 88 73)(23 39 93 89 74)(24 40 94 90 75)(25 41 95 91 76)(26 42 96 85 77)(27 36 97 86 71)(28 37 98 87 72)
(1 59)(2 60)(3 61)(4 62)(5 63)(6 57)(7 58)(8 53)(9 54)(10 55)(11 56)(12 50)(13 51)(14 52)(15 47)(16 48)(17 49)(18 43)(19 44)(20 45)(21 46)(22 88)(23 89)(24 90)(25 91)(26 85)(27 86)(28 87)(36 97)(37 98)(38 92)(39 93)(40 94)(41 95)(42 96)(64 103)(65 104)(66 105)(67 99)(68 100)(69 101)(70 102)

G:=sub<Sym(105)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105), (1,54,94)(2,55,95)(3,56,96)(4,50,97)(5,51,98)(6,52,92)(7,53,93)(8,39,58)(9,40,59)(10,41,60)(11,42,61)(12,36,62)(13,37,63)(14,38,57)(15,85,65)(16,86,66)(17,87,67)(18,88,68)(19,89,69)(20,90,70)(21,91,64)(22,100,43)(23,101,44)(24,102,45)(25,103,46)(26,104,47)(27,105,48)(28,99,49)(29,75,79)(30,76,80)(31,77,81)(32,71,82)(33,72,83)(34,73,84)(35,74,78), (8,39)(9,40)(10,41)(11,42)(12,36)(13,37)(14,38)(15,85)(16,86)(17,87)(18,88)(19,89)(20,90)(21,91)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,75)(30,76)(31,77)(32,71)(33,72)(34,73)(35,74)(50,97)(51,98)(52,92)(53,93)(54,94)(55,95)(56,96), (1,70,79,102,59)(2,64,80,103,60)(3,65,81,104,61)(4,66,82,105,62)(5,67,83,99,63)(6,68,84,100,57)(7,69,78,101,58)(8,53,19,35,44)(9,54,20,29,45)(10,55,21,30,46)(11,56,15,31,47)(12,50,16,32,48)(13,51,17,33,49)(14,52,18,34,43)(22,38,92,88,73)(23,39,93,89,74)(24,40,94,90,75)(25,41,95,91,76)(26,42,96,85,77)(27,36,97,86,71)(28,37,98,87,72), (1,59)(2,60)(3,61)(4,62)(5,63)(6,57)(7,58)(8,53)(9,54)(10,55)(11,56)(12,50)(13,51)(14,52)(15,47)(16,48)(17,49)(18,43)(19,44)(20,45)(21,46)(22,88)(23,89)(24,90)(25,91)(26,85)(27,86)(28,87)(36,97)(37,98)(38,92)(39,93)(40,94)(41,95)(42,96)(64,103)(65,104)(66,105)(67,99)(68,100)(69,101)(70,102)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105), (1,54,94)(2,55,95)(3,56,96)(4,50,97)(5,51,98)(6,52,92)(7,53,93)(8,39,58)(9,40,59)(10,41,60)(11,42,61)(12,36,62)(13,37,63)(14,38,57)(15,85,65)(16,86,66)(17,87,67)(18,88,68)(19,89,69)(20,90,70)(21,91,64)(22,100,43)(23,101,44)(24,102,45)(25,103,46)(26,104,47)(27,105,48)(28,99,49)(29,75,79)(30,76,80)(31,77,81)(32,71,82)(33,72,83)(34,73,84)(35,74,78), (8,39)(9,40)(10,41)(11,42)(12,36)(13,37)(14,38)(15,85)(16,86)(17,87)(18,88)(19,89)(20,90)(21,91)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,75)(30,76)(31,77)(32,71)(33,72)(34,73)(35,74)(50,97)(51,98)(52,92)(53,93)(54,94)(55,95)(56,96), (1,70,79,102,59)(2,64,80,103,60)(3,65,81,104,61)(4,66,82,105,62)(5,67,83,99,63)(6,68,84,100,57)(7,69,78,101,58)(8,53,19,35,44)(9,54,20,29,45)(10,55,21,30,46)(11,56,15,31,47)(12,50,16,32,48)(13,51,17,33,49)(14,52,18,34,43)(22,38,92,88,73)(23,39,93,89,74)(24,40,94,90,75)(25,41,95,91,76)(26,42,96,85,77)(27,36,97,86,71)(28,37,98,87,72), (1,59)(2,60)(3,61)(4,62)(5,63)(6,57)(7,58)(8,53)(9,54)(10,55)(11,56)(12,50)(13,51)(14,52)(15,47)(16,48)(17,49)(18,43)(19,44)(20,45)(21,46)(22,88)(23,89)(24,90)(25,91)(26,85)(27,86)(28,87)(36,97)(37,98)(38,92)(39,93)(40,94)(41,95)(42,96)(64,103)(65,104)(66,105)(67,99)(68,100)(69,101)(70,102) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105)], [(1,54,94),(2,55,95),(3,56,96),(4,50,97),(5,51,98),(6,52,92),(7,53,93),(8,39,58),(9,40,59),(10,41,60),(11,42,61),(12,36,62),(13,37,63),(14,38,57),(15,85,65),(16,86,66),(17,87,67),(18,88,68),(19,89,69),(20,90,70),(21,91,64),(22,100,43),(23,101,44),(24,102,45),(25,103,46),(26,104,47),(27,105,48),(28,99,49),(29,75,79),(30,76,80),(31,77,81),(32,71,82),(33,72,83),(34,73,84),(35,74,78)], [(8,39),(9,40),(10,41),(11,42),(12,36),(13,37),(14,38),(15,85),(16,86),(17,87),(18,88),(19,89),(20,90),(21,91),(22,43),(23,44),(24,45),(25,46),(26,47),(27,48),(28,49),(29,75),(30,76),(31,77),(32,71),(33,72),(34,73),(35,74),(50,97),(51,98),(52,92),(53,93),(54,94),(55,95),(56,96)], [(1,70,79,102,59),(2,64,80,103,60),(3,65,81,104,61),(4,66,82,105,62),(5,67,83,99,63),(6,68,84,100,57),(7,69,78,101,58),(8,53,19,35,44),(9,54,20,29,45),(10,55,21,30,46),(11,56,15,31,47),(12,50,16,32,48),(13,51,17,33,49),(14,52,18,34,43),(22,38,92,88,73),(23,39,93,89,74),(24,40,94,90,75),(25,41,95,91,76),(26,42,96,85,77),(27,36,97,86,71),(28,37,98,87,72)], [(1,59),(2,60),(3,61),(4,62),(5,63),(6,57),(7,58),(8,53),(9,54),(10,55),(11,56),(12,50),(13,51),(14,52),(15,47),(16,48),(17,49),(18,43),(19,44),(20,45),(21,46),(22,88),(23,89),(24,90),(25,91),(26,85),(27,86),(28,87),(36,97),(37,98),(38,92),(39,93),(40,94),(41,95),(42,96),(64,103),(65,104),(66,105),(67,99),(68,100),(69,101),(70,102)]])

84 conjugacy classes

class 1 2A2B2C 3 5A5B 6 7A···7F10A10B14A···14F14G···14L14M···14R15A15B21A···21F35A···35L42A···42F70A···70L105A···105L
order122235567···7101014···1414···1414···14151521···2135···3542···4270···70105···105
size13515222101···1663···35···515···15442···22···210···106···64···4

84 irreducible representations

dim111111112222222244
type+++++++++
imageC1C2C2C2C7C14C14C14S3D5D6D10S3×C7C7×D5S3×C14D5×C14S3×D5S3×C7×D5
kernelS3×C7×D5D5×C21S3×C35C7×D15S3×D5C5×S3C3×D5D15C7×D5S3×C7C35C21D5S3C5C3C7C1
# reps111166661212612612212

Matrix representation of S3×C7×D5 in GL4(𝔽211) generated by

123000
012300
00580
00058
,
1000
0100
00209176
001931
,
1000
0100
0010
0018210
,
0100
21017800
0010
0001
,
0100
1000
0010
0001
G:=sub<GL(4,GF(211))| [123,0,0,0,0,123,0,0,0,0,58,0,0,0,0,58],[1,0,0,0,0,1,0,0,0,0,209,193,0,0,176,1],[1,0,0,0,0,1,0,0,0,0,1,18,0,0,0,210],[0,210,0,0,1,178,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1] >;

S3×C7×D5 in GAP, Magma, Sage, TeX

S_3\times C_7\times D_5
% in TeX

G:=Group("S3xC7xD5");
// GroupNames label

G:=SmallGroup(420,27);
// by ID

G=gap.SmallGroup(420,27);
# by ID

G:=PCGroup([5,-2,-2,-7,-3,-5,568,8404]);
// Polycyclic

G:=Group<a,b,c,d,e|a^7=b^3=c^2=d^5=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

Export

Subgroup lattice of S3×C7×D5 in TeX

׿
×
𝔽