direct product, metabelian, supersoluble, monomial, A-group
Aliases: D5×F7, D35⋊C6, C5⋊F7⋊C2, C35⋊(C2×C6), (D5×D7)⋊C3, D7⋊(C3×D5), (C5×D7)⋊C6, (C7×D5)⋊C6, C7⋊C3⋊1D10, C7⋊1(C6×D5), (C5×F7)⋊C2, C5⋊1(C2×F7), (D5×C7⋊C3)⋊C2, (C5×C7⋊C3)⋊C22, SmallGroup(420,16)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C7 — C35 — C5×C7⋊C3 — C5×F7 — D5×F7 |
C35 — D5×F7 |
Generators and relations for D5×F7
G = < a,b,c,d | a5=b2=c7=d6=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c5 >
Character table of D5×F7
class | 1 | 2A | 2B | 2C | 3A | 3B | 5A | 5B | 6A | 6B | 6C | 6D | 6E | 6F | 7 | 10A | 10B | 14 | 15A | 15B | 15C | 15D | 30A | 30B | 30C | 30D | 35A | 35B | |
size | 1 | 5 | 7 | 35 | 7 | 7 | 2 | 2 | 7 | 7 | 35 | 35 | 35 | 35 | 6 | 14 | 14 | 30 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ65 | ζ65 | ζ6 | ζ6 | 1 | 1 | 1 | -1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | linear of order 6 |
ρ6 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | linear of order 3 |
ρ7 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | 1 | 1 | ζ6 | ζ65 | ζ6 | ζ32 | ζ65 | ζ3 | 1 | -1 | -1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ65 | ζ6 | ζ65 | ζ6 | 1 | 1 | linear of order 6 |
ρ8 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | linear of order 3 |
ρ9 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ65 | ζ6 | ζ3 | ζ65 | ζ32 | ζ6 | 1 | -1 | -1 | -1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ6 | ζ65 | ζ6 | ζ65 | 1 | 1 | linear of order 6 |
ρ10 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | 1 | 1 | ζ65 | ζ6 | ζ65 | ζ3 | ζ6 | ζ32 | 1 | -1 | -1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ6 | ζ65 | ζ6 | ζ65 | 1 | 1 | linear of order 6 |
ρ11 | 1 | -1 | 1 | -1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ6 | ζ6 | ζ65 | ζ65 | 1 | 1 | 1 | -1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | linear of order 6 |
ρ12 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ6 | ζ65 | ζ32 | ζ6 | ζ3 | ζ65 | 1 | -1 | -1 | -1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ65 | ζ6 | ζ65 | ζ6 | 1 | 1 | linear of order 6 |
ρ13 | 2 | 0 | -2 | 0 | 2 | 2 | -1-√5/2 | -1+√5/2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 1-√5/2 | 1+√5/2 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D10 |
ρ14 | 2 | 0 | -2 | 0 | 2 | 2 | -1+√5/2 | -1-√5/2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 1+√5/2 | 1-√5/2 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D10 |
ρ15 | 2 | 0 | 2 | 0 | 2 | 2 | -1-√5/2 | -1+√5/2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | -1+√5/2 | -1-√5/2 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ16 | 2 | 0 | 2 | 0 | 2 | 2 | -1+√5/2 | -1-√5/2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | -1-√5/2 | -1+√5/2 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ17 | 2 | 0 | -2 | 0 | -1+√-3 | -1-√-3 | -1+√5/2 | -1-√5/2 | 1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | 2 | 1+√5/2 | 1-√5/2 | 0 | ζ32ζ54+ζ32ζ5 | ζ32ζ53+ζ32ζ52 | ζ3ζ53+ζ3ζ52 | ζ3ζ54+ζ3ζ5 | -ζ32ζ54-ζ32ζ5 | -ζ3ζ54-ζ3ζ5 | -ζ32ζ53-ζ32ζ52 | -ζ3ζ53-ζ3ζ52 | -1+√5/2 | -1-√5/2 | complex lifted from C6×D5 |
ρ18 | 2 | 0 | -2 | 0 | -1+√-3 | -1-√-3 | -1-√5/2 | -1+√5/2 | 1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | 2 | 1-√5/2 | 1+√5/2 | 0 | ζ32ζ53+ζ32ζ52 | ζ32ζ54+ζ32ζ5 | ζ3ζ54+ζ3ζ5 | ζ3ζ53+ζ3ζ52 | -ζ32ζ53-ζ32ζ52 | -ζ3ζ53-ζ3ζ52 | -ζ32ζ54-ζ32ζ5 | -ζ3ζ54-ζ3ζ5 | -1-√5/2 | -1+√5/2 | complex lifted from C6×D5 |
ρ19 | 2 | 0 | 2 | 0 | -1-√-3 | -1+√-3 | -1+√5/2 | -1-√5/2 | -1-√-3 | -1+√-3 | 0 | 0 | 0 | 0 | 2 | -1-√5/2 | -1+√5/2 | 0 | ζ3ζ54+ζ3ζ5 | ζ3ζ53+ζ3ζ52 | ζ32ζ53+ζ32ζ52 | ζ32ζ54+ζ32ζ5 | ζ3ζ54+ζ3ζ5 | ζ32ζ54+ζ32ζ5 | ζ3ζ53+ζ3ζ52 | ζ32ζ53+ζ32ζ52 | -1+√5/2 | -1-√5/2 | complex lifted from C3×D5 |
ρ20 | 2 | 0 | -2 | 0 | -1-√-3 | -1+√-3 | -1+√5/2 | -1-√5/2 | 1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | 2 | 1+√5/2 | 1-√5/2 | 0 | ζ3ζ54+ζ3ζ5 | ζ3ζ53+ζ3ζ52 | ζ32ζ53+ζ32ζ52 | ζ32ζ54+ζ32ζ5 | -ζ3ζ54-ζ3ζ5 | -ζ32ζ54-ζ32ζ5 | -ζ3ζ53-ζ3ζ52 | -ζ32ζ53-ζ32ζ52 | -1+√5/2 | -1-√5/2 | complex lifted from C6×D5 |
ρ21 | 2 | 0 | 2 | 0 | -1+√-3 | -1-√-3 | -1-√5/2 | -1+√5/2 | -1+√-3 | -1-√-3 | 0 | 0 | 0 | 0 | 2 | -1+√5/2 | -1-√5/2 | 0 | ζ32ζ53+ζ32ζ52 | ζ32ζ54+ζ32ζ5 | ζ3ζ54+ζ3ζ5 | ζ3ζ53+ζ3ζ52 | ζ32ζ53+ζ32ζ52 | ζ3ζ53+ζ3ζ52 | ζ32ζ54+ζ32ζ5 | ζ3ζ54+ζ3ζ5 | -1-√5/2 | -1+√5/2 | complex lifted from C3×D5 |
ρ22 | 2 | 0 | 2 | 0 | -1-√-3 | -1+√-3 | -1-√5/2 | -1+√5/2 | -1-√-3 | -1+√-3 | 0 | 0 | 0 | 0 | 2 | -1+√5/2 | -1-√5/2 | 0 | ζ3ζ53+ζ3ζ52 | ζ3ζ54+ζ3ζ5 | ζ32ζ54+ζ32ζ5 | ζ32ζ53+ζ32ζ52 | ζ3ζ53+ζ3ζ52 | ζ32ζ53+ζ32ζ52 | ζ3ζ54+ζ3ζ5 | ζ32ζ54+ζ32ζ5 | -1-√5/2 | -1+√5/2 | complex lifted from C3×D5 |
ρ23 | 2 | 0 | 2 | 0 | -1+√-3 | -1-√-3 | -1+√5/2 | -1-√5/2 | -1+√-3 | -1-√-3 | 0 | 0 | 0 | 0 | 2 | -1-√5/2 | -1+√5/2 | 0 | ζ32ζ54+ζ32ζ5 | ζ32ζ53+ζ32ζ52 | ζ3ζ53+ζ3ζ52 | ζ3ζ54+ζ3ζ5 | ζ32ζ54+ζ32ζ5 | ζ3ζ54+ζ3ζ5 | ζ32ζ53+ζ32ζ52 | ζ3ζ53+ζ3ζ52 | -1+√5/2 | -1-√5/2 | complex lifted from C3×D5 |
ρ24 | 2 | 0 | -2 | 0 | -1-√-3 | -1+√-3 | -1-√5/2 | -1+√5/2 | 1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | 2 | 1-√5/2 | 1+√5/2 | 0 | ζ3ζ53+ζ3ζ52 | ζ3ζ54+ζ3ζ5 | ζ32ζ54+ζ32ζ5 | ζ32ζ53+ζ32ζ52 | -ζ3ζ53-ζ3ζ52 | -ζ32ζ53-ζ32ζ52 | -ζ3ζ54-ζ3ζ5 | -ζ32ζ54-ζ32ζ5 | -1-√5/2 | -1+√5/2 | complex lifted from C6×D5 |
ρ25 | 6 | -6 | 0 | 0 | 0 | 0 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from C2×F7 |
ρ26 | 6 | 6 | 0 | 0 | 0 | 0 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from F7 |
ρ27 | 12 | 0 | 0 | 0 | 0 | 0 | -3+3√5 | -3-3√5 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1-√5/2 | 1+√5/2 | orthogonal faithful |
ρ28 | 12 | 0 | 0 | 0 | 0 | 0 | -3-3√5 | -3+3√5 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1+√5/2 | 1-√5/2 | orthogonal faithful |
(1 29 22 15 8)(2 30 23 16 9)(3 31 24 17 10)(4 32 25 18 11)(5 33 26 19 12)(6 34 27 20 13)(7 35 28 21 14)
(1 8)(2 9)(3 10)(4 11)(5 12)(6 13)(7 14)(15 29)(16 30)(17 31)(18 32)(19 33)(20 34)(21 35)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)
(2 4 3 7 5 6)(9 11 10 14 12 13)(16 18 17 21 19 20)(23 25 24 28 26 27)(30 32 31 35 33 34)
G:=sub<Sym(35)| (1,29,22,15,8)(2,30,23,16,9)(3,31,24,17,10)(4,32,25,18,11)(5,33,26,19,12)(6,34,27,20,13)(7,35,28,21,14), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)(21,35), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35), (2,4,3,7,5,6)(9,11,10,14,12,13)(16,18,17,21,19,20)(23,25,24,28,26,27)(30,32,31,35,33,34)>;
G:=Group( (1,29,22,15,8)(2,30,23,16,9)(3,31,24,17,10)(4,32,25,18,11)(5,33,26,19,12)(6,34,27,20,13)(7,35,28,21,14), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)(21,35), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35), (2,4,3,7,5,6)(9,11,10,14,12,13)(16,18,17,21,19,20)(23,25,24,28,26,27)(30,32,31,35,33,34) );
G=PermutationGroup([[(1,29,22,15,8),(2,30,23,16,9),(3,31,24,17,10),(4,32,25,18,11),(5,33,26,19,12),(6,34,27,20,13),(7,35,28,21,14)], [(1,8),(2,9),(3,10),(4,11),(5,12),(6,13),(7,14),(15,29),(16,30),(17,31),(18,32),(19,33),(20,34),(21,35)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35)], [(2,4,3,7,5,6),(9,11,10,14,12,13),(16,18,17,21,19,20),(23,25,24,28,26,27),(30,32,31,35,33,34)]])
Matrix representation of D5×F7 ►in GL8(𝔽211)
210 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
31 | 179 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
180 | 210 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 210 | 210 | 210 | 210 | 210 | 210 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 15 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 210 | 210 | 210 | 210 | 210 | 210 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(8,GF(211))| [210,31,0,0,0,0,0,0,1,179,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,180,0,0,0,0,0,0,0,210,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,210,1,0,0,0,0,0,0,210,0,1,0,0,0,0,0,210,0,0,1,0,0,0,0,210,0,0,0,1,0,0,0,210,0,0,0,0,1,0,0,210,0,0,0,0,0],[15,0,0,0,0,0,0,0,0,15,0,0,0,0,0,0,0,0,1,0,0,0,210,0,0,0,0,0,0,1,210,0,0,0,0,0,0,0,210,0,0,0,0,0,1,0,210,0,0,0,0,0,0,0,210,1,0,0,0,1,0,0,210,0] >;
D5×F7 in GAP, Magma, Sage, TeX
D_5\times F_7
% in TeX
G:=Group("D5xF7");
// GroupNames label
G:=SmallGroup(420,16);
// by ID
G=gap.SmallGroup(420,16);
# by ID
G:=PCGroup([5,-2,-2,-3,-5,-7,488,9004,1514]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^2=c^7=d^6=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^5>;
// generators/relations
Export
Subgroup lattice of D5×F7 in TeX
Character table of D5×F7 in TeX