Extensions 1→N→G→Q→1 with N=C4 and Q=S3×D9

Direct product G=N×Q with N=C4 and Q=S3×D9
dρLabelID
C4×S3×D9724C4xS3xD9432,290

Semidirect products G=N:Q with N=C4 and Q=S3×D9
extensionφ:Q→Aut NdρLabelID
C41(S3×D9) = D9×D12φ: S3×D9/C3×D9C2 ⊆ Aut C4724+C4:1(S3xD9)432,292
C42(S3×D9) = S3×D36φ: S3×D9/S3×C9C2 ⊆ Aut C4724+C4:2(S3xD9)432,291
C43(S3×D9) = C36⋊D6φ: S3×D9/C9⋊S3C2 ⊆ Aut C4724C4:3(S3xD9)432,293

Non-split extensions G=N.Q with N=C4 and Q=S3×D9
extensionφ:Q→Aut NdρLabelID
C4.1(S3×D9) = C9⋊D24φ: S3×D9/C3×D9C2 ⊆ Aut C4724+C4.1(S3xD9)432,69
C4.2(S3×D9) = C36.D6φ: S3×D9/C3×D9C2 ⊆ Aut C41444-C4.2(S3xD9)432,71
C4.3(S3×D9) = C18.D12φ: S3×D9/C3×D9C2 ⊆ Aut C4724+C4.3(S3xD9)432,73
C4.4(S3×D9) = C9⋊Dic12φ: S3×D9/C3×D9C2 ⊆ Aut C41444-C4.4(S3xD9)432,75
C4.5(S3×D9) = D9×Dic6φ: S3×D9/C3×D9C2 ⊆ Aut C41444-C4.5(S3xD9)432,280
C4.6(S3×D9) = Dic65D9φ: S3×D9/C3×D9C2 ⊆ Aut C4724+C4.6(S3xD9)432,282
C4.7(S3×D9) = D125D9φ: S3×D9/C3×D9C2 ⊆ Aut C41444-C4.7(S3xD9)432,285
C4.8(S3×D9) = D36.S3φ: S3×D9/S3×C9C2 ⊆ Aut C41444-C4.8(S3xD9)432,62
C4.9(S3×D9) = C6.D36φ: S3×D9/S3×C9C2 ⊆ Aut C4724+C4.9(S3xD9)432,63
C4.10(S3×D9) = C3⋊D72φ: S3×D9/S3×C9C2 ⊆ Aut C4724+C4.10(S3xD9)432,64
C4.11(S3×D9) = C3⋊Dic36φ: S3×D9/S3×C9C2 ⊆ Aut C41444-C4.11(S3xD9)432,65
C4.12(S3×D9) = S3×Dic18φ: S3×D9/S3×C9C2 ⊆ Aut C41444-C4.12(S3xD9)432,284
C4.13(S3×D9) = D365S3φ: S3×D9/S3×C9C2 ⊆ Aut C41444-C4.13(S3xD9)432,288
C4.14(S3×D9) = Dic9.D6φ: S3×D9/S3×C9C2 ⊆ Aut C4724+C4.14(S3xD9)432,289
C4.15(S3×D9) = D36⋊S3φ: S3×D9/C9⋊S3C2 ⊆ Aut C41444C4.15(S3xD9)432,68
C4.16(S3×D9) = D12.D9φ: S3×D9/C9⋊S3C2 ⊆ Aut C41444C4.16(S3xD9)432,70
C4.17(S3×D9) = Dic6⋊D9φ: S3×D9/C9⋊S3C2 ⊆ Aut C41444C4.17(S3xD9)432,72
C4.18(S3×D9) = C12.D18φ: S3×D9/C9⋊S3C2 ⊆ Aut C41444C4.18(S3xD9)432,74
C4.19(S3×D9) = D18.D6φ: S3×D9/C9⋊S3C2 ⊆ Aut C4724C4.19(S3xD9)432,281
C4.20(S3×D9) = Dic18⋊S3φ: S3×D9/C9⋊S3C2 ⊆ Aut C4724C4.20(S3xD9)432,283
C4.21(S3×D9) = D12⋊D9φ: S3×D9/C9⋊S3C2 ⊆ Aut C4724C4.21(S3xD9)432,286
C4.22(S3×D9) = D9×C3⋊C8central extension (φ=1)1444C4.22(S3xD9)432,58
C4.23(S3×D9) = C36.38D6central extension (φ=1)724C4.23(S3xD9)432,59
C4.24(S3×D9) = C36.39D6central extension (φ=1)1444C4.24(S3xD9)432,60
C4.25(S3×D9) = C36.40D6central extension (φ=1)724C4.25(S3xD9)432,61
C4.26(S3×D9) = S3×C9⋊C8central extension (φ=1)1444C4.26(S3xD9)432,66
C4.27(S3×D9) = D6.Dic9central extension (φ=1)1444C4.27(S3xD9)432,67
C4.28(S3×D9) = D6.D18central extension (φ=1)724C4.28(S3xD9)432,287

׿
×
𝔽