extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1(S3×D9) = C9⋊D24 | φ: S3×D9/C3×D9 → C2 ⊆ Aut C4 | 72 | 4+ | C4.1(S3xD9) | 432,69 |
C4.2(S3×D9) = C36.D6 | φ: S3×D9/C3×D9 → C2 ⊆ Aut C4 | 144 | 4- | C4.2(S3xD9) | 432,71 |
C4.3(S3×D9) = C18.D12 | φ: S3×D9/C3×D9 → C2 ⊆ Aut C4 | 72 | 4+ | C4.3(S3xD9) | 432,73 |
C4.4(S3×D9) = C9⋊Dic12 | φ: S3×D9/C3×D9 → C2 ⊆ Aut C4 | 144 | 4- | C4.4(S3xD9) | 432,75 |
C4.5(S3×D9) = D9×Dic6 | φ: S3×D9/C3×D9 → C2 ⊆ Aut C4 | 144 | 4- | C4.5(S3xD9) | 432,280 |
C4.6(S3×D9) = Dic6⋊5D9 | φ: S3×D9/C3×D9 → C2 ⊆ Aut C4 | 72 | 4+ | C4.6(S3xD9) | 432,282 |
C4.7(S3×D9) = D12⋊5D9 | φ: S3×D9/C3×D9 → C2 ⊆ Aut C4 | 144 | 4- | C4.7(S3xD9) | 432,285 |
C4.8(S3×D9) = D36.S3 | φ: S3×D9/S3×C9 → C2 ⊆ Aut C4 | 144 | 4- | C4.8(S3xD9) | 432,62 |
C4.9(S3×D9) = C6.D36 | φ: S3×D9/S3×C9 → C2 ⊆ Aut C4 | 72 | 4+ | C4.9(S3xD9) | 432,63 |
C4.10(S3×D9) = C3⋊D72 | φ: S3×D9/S3×C9 → C2 ⊆ Aut C4 | 72 | 4+ | C4.10(S3xD9) | 432,64 |
C4.11(S3×D9) = C3⋊Dic36 | φ: S3×D9/S3×C9 → C2 ⊆ Aut C4 | 144 | 4- | C4.11(S3xD9) | 432,65 |
C4.12(S3×D9) = S3×Dic18 | φ: S3×D9/S3×C9 → C2 ⊆ Aut C4 | 144 | 4- | C4.12(S3xD9) | 432,284 |
C4.13(S3×D9) = D36⋊5S3 | φ: S3×D9/S3×C9 → C2 ⊆ Aut C4 | 144 | 4- | C4.13(S3xD9) | 432,288 |
C4.14(S3×D9) = Dic9.D6 | φ: S3×D9/S3×C9 → C2 ⊆ Aut C4 | 72 | 4+ | C4.14(S3xD9) | 432,289 |
C4.15(S3×D9) = D36⋊S3 | φ: S3×D9/C9⋊S3 → C2 ⊆ Aut C4 | 144 | 4 | C4.15(S3xD9) | 432,68 |
C4.16(S3×D9) = D12.D9 | φ: S3×D9/C9⋊S3 → C2 ⊆ Aut C4 | 144 | 4 | C4.16(S3xD9) | 432,70 |
C4.17(S3×D9) = Dic6⋊D9 | φ: S3×D9/C9⋊S3 → C2 ⊆ Aut C4 | 144 | 4 | C4.17(S3xD9) | 432,72 |
C4.18(S3×D9) = C12.D18 | φ: S3×D9/C9⋊S3 → C2 ⊆ Aut C4 | 144 | 4 | C4.18(S3xD9) | 432,74 |
C4.19(S3×D9) = D18.D6 | φ: S3×D9/C9⋊S3 → C2 ⊆ Aut C4 | 72 | 4 | C4.19(S3xD9) | 432,281 |
C4.20(S3×D9) = Dic18⋊S3 | φ: S3×D9/C9⋊S3 → C2 ⊆ Aut C4 | 72 | 4 | C4.20(S3xD9) | 432,283 |
C4.21(S3×D9) = D12⋊D9 | φ: S3×D9/C9⋊S3 → C2 ⊆ Aut C4 | 72 | 4 | C4.21(S3xD9) | 432,286 |
C4.22(S3×D9) = D9×C3⋊C8 | central extension (φ=1) | 144 | 4 | C4.22(S3xD9) | 432,58 |
C4.23(S3×D9) = C36.38D6 | central extension (φ=1) | 72 | 4 | C4.23(S3xD9) | 432,59 |
C4.24(S3×D9) = C36.39D6 | central extension (φ=1) | 144 | 4 | C4.24(S3xD9) | 432,60 |
C4.25(S3×D9) = C36.40D6 | central extension (φ=1) | 72 | 4 | C4.25(S3xD9) | 432,61 |
C4.26(S3×D9) = S3×C9⋊C8 | central extension (φ=1) | 144 | 4 | C4.26(S3xD9) | 432,66 |
C4.27(S3×D9) = D6.Dic9 | central extension (φ=1) | 144 | 4 | C4.27(S3xD9) | 432,67 |
C4.28(S3×D9) = D6.D18 | central extension (φ=1) | 72 | 4 | C4.28(S3xD9) | 432,287 |