direct product, metacyclic, supersoluble, monomial
Aliases: C2×C25⋊C10, C50⋊C10, D50⋊C5, D25⋊C10, C52.D10, 5- 1+2⋊C22, C25⋊(C2×C10), C5.3(D5×C10), C10.6(C5×D5), (C5×C10).4D5, (C2×5- 1+2)⋊C2, SmallGroup(500,31)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C25 — 5- 1+2 — C25⋊C10 — C2×C25⋊C10 |
C25 — C2×C25⋊C10 |
Generators and relations for C2×C25⋊C10
G = < a,b,c | a2=b25=c10=1, ab=ba, ac=ca, cbc-1=b9 >
(1 48)(2 49)(3 50)(4 26)(5 27)(6 28)(7 29)(8 30)(9 31)(10 32)(11 33)(12 34)(13 35)(14 36)(15 37)(16 38)(17 39)(18 40)(19 41)(20 42)(21 43)(22 44)(23 45)(24 46)(25 47)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)
(1 48)(2 37 22 42 17 47 12 27 7 32)(3 26 18 36 8 46 23 31 13 41)(4 40 14 30 24 45 9 35 19 50)(5 29 10 49 15 44 20 39 25 34)(6 43)(11 38)(16 33)(21 28)
G:=sub<Sym(50)| (1,48)(2,49)(3,50)(4,26)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,33)(12,34)(13,35)(14,36)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44)(23,45)(24,46)(25,47), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50), (1,48)(2,37,22,42,17,47,12,27,7,32)(3,26,18,36,8,46,23,31,13,41)(4,40,14,30,24,45,9,35,19,50)(5,29,10,49,15,44,20,39,25,34)(6,43)(11,38)(16,33)(21,28)>;
G:=Group( (1,48)(2,49)(3,50)(4,26)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,33)(12,34)(13,35)(14,36)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44)(23,45)(24,46)(25,47), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50), (1,48)(2,37,22,42,17,47,12,27,7,32)(3,26,18,36,8,46,23,31,13,41)(4,40,14,30,24,45,9,35,19,50)(5,29,10,49,15,44,20,39,25,34)(6,43)(11,38)(16,33)(21,28) );
G=PermutationGroup([[(1,48),(2,49),(3,50),(4,26),(5,27),(6,28),(7,29),(8,30),(9,31),(10,32),(11,33),(12,34),(13,35),(14,36),(15,37),(16,38),(17,39),(18,40),(19,41),(20,42),(21,43),(22,44),(23,45),(24,46),(25,47)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)], [(1,48),(2,37,22,42,17,47,12,27,7,32),(3,26,18,36,8,46,23,31,13,41),(4,40,14,30,24,45,9,35,19,50),(5,29,10,49,15,44,20,39,25,34),(6,43),(11,38),(16,33),(21,28)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 5A | 5B | 5C | 5D | 5E | 5F | 10A | 10B | 10C | 10D | 10E | 10F | 10G | ··· | 10N | 25A | ··· | 25J | 50A | ··· | 50J |
order | 1 | 2 | 2 | 2 | 5 | 5 | 5 | 5 | 5 | 5 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | ··· | 10 | 25 | ··· | 25 | 50 | ··· | 50 |
size | 1 | 1 | 25 | 25 | 2 | 2 | 5 | 5 | 5 | 5 | 2 | 2 | 5 | 5 | 5 | 5 | 25 | ··· | 25 | 10 | ··· | 10 | 10 | ··· | 10 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 10 | 10 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C5 | C10 | C10 | C25⋊C10 | C2×C25⋊C10 | D5 | D10 | C5×D5 | D5×C10 |
kernel | C2×C25⋊C10 | C25⋊C10 | C2×5- 1+2 | D50 | D25 | C50 | C2 | C1 | C5×C10 | C52 | C10 | C5 |
# reps | 1 | 2 | 1 | 4 | 8 | 4 | 2 | 2 | 2 | 2 | 8 | 8 |
Matrix representation of C2×C25⋊C10 ►in GL10(𝔽101)
100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 1 |
23 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 99 | 78 |
22 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 0 |
23 | 1 | 78 | 100 | 0 | 0 | 0 | 0 | 100 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 100 | 0 |
23 | 1 | 0 | 0 | 78 | 100 | 0 | 0 | 100 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 100 | 0 |
23 | 1 | 0 | 0 | 0 | 0 | 78 | 100 | 100 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 100 | 0 |
79 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
79 | 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
78 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 23 | 1 |
1 | 22 | 0 | 0 | 0 | 0 | 0 | 0 | 78 | 78 |
78 | 100 | 0 | 0 | 0 | 0 | 1 | 23 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 |
0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 |
78 | 100 | 0 | 0 | 23 | 1 | 0 | 0 | 0 | 0 |
1 | 22 | 78 | 78 | 0 | 0 | 0 | 0 | 0 | 0 |
78 | 100 | 1 | 23 | 0 | 0 | 0 | 0 | 0 | 0 |
G:=sub<GL(10,GF(101))| [100,0,0,0,0,0,0,0,0,0,0,100,0,0,0,0,0,0,0,0,0,0,100,0,0,0,0,0,0,0,0,0,0,100,0,0,0,0,0,0,0,0,0,0,100,0,0,0,0,0,0,0,0,0,0,100,0,0,0,0,0,0,0,0,0,0,100,0,0,0,0,0,0,0,0,0,0,100,0,0,0,0,0,0,0,0,0,0,100,0,0,0,0,0,0,0,0,0,0,100],[0,23,22,0,23,0,23,0,23,0,0,1,1,0,1,0,1,0,1,0,0,0,0,0,78,1,0,0,0,0,0,0,0,0,100,0,0,0,0,0,0,0,0,0,0,0,78,1,0,0,0,0,0,0,0,0,100,0,0,0,0,0,0,0,0,0,0,0,78,1,0,0,0,0,0,0,0,0,100,0,100,99,100,100,100,100,100,100,100,100,1,78,0,0,0,0,0,0,0,0],[79,79,78,1,78,0,0,78,1,78,100,22,100,22,100,0,0,100,22,100,0,0,0,0,0,0,0,0,78,1,0,0,0,0,0,0,0,0,78,23,0,0,0,0,0,0,100,23,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,23,100,0,0,0,0,0,0,23,78,0,0,0,0,0,0,0,0,1,78,0,0,0,0,0,0] >;
C2×C25⋊C10 in GAP, Magma, Sage, TeX
C_2\times C_{25}\rtimes C_{10}
% in TeX
G:=Group("C2xC25:C10");
// GroupNames label
G:=SmallGroup(500,31);
// by ID
G=gap.SmallGroup(500,31);
# by ID
G:=PCGroup([5,-2,-2,-5,-5,-5,3603,613,418,10004]);
// Polycyclic
G:=Group<a,b,c|a^2=b^25=c^10=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^9>;
// generators/relations
Export