Copied to
clipboard

G = Q8:6D4order 64 = 26

2nd semidirect product of Q8 and D4 acting through Inn(Q8)

p-group, metabelian, nilpotent (class 2), monomial

Aliases: Q8:6D4, C23.17C23, C42.46C22, C22.44C24, C2.142+ 1+4, Q8o2(C4:C4), (C4xD4):18C2, C4:3(C4oD4), C4:1D4:8C2, (C4xQ8):13C2, C4.40(C2xD4), C4:D4:14C2, C4:C4.82C22, (C2xC4).55C23, C2.22(C22xD4), (C2xD4).69C22, (C2xQ8).74C22, C22:C4.21C22, (C22xC4).71C22, C4:C4o(C2xQ8), (C2xC4oD4):9C2, C2.23(C2xC4oD4), SmallGroup(64,231)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — Q8:6D4
C1C2C22C2xC4C22xC4C2xC4oD4 — Q8:6D4
C1C22 — Q8:6D4
C1C22 — Q8:6D4
C1C22 — Q8:6D4

Generators and relations for Q8:6D4
 G = < a,b,c,d | a4=c4=d2=1, b2=a2, bab-1=cac-1=a-1, ad=da, cbc-1=dbd=a2b, dcd=c-1 >

Subgroups: 253 in 156 conjugacy classes, 83 normal (10 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C42, C22:C4, C4:C4, C4:C4, C22xC4, C2xD4, C2xQ8, C4oD4, C4xD4, C4xQ8, C4:D4, C4:1D4, C2xC4oD4, Q8:6D4
Quotients: C1, C2, C22, D4, C23, C2xD4, C4oD4, C24, C22xD4, C2xC4oD4, 2+ 1+4, Q8:6D4

Character table of Q8:6D4

 class 12A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O
 size 1111444444222222222222444
ρ11111111111111111111111111    trivial
ρ211111-1-1-11-11111-1-11-11-1111-1-1    linear of order 2
ρ31111-1-11-111-1-111-1-1-1-11-11-1-111    linear of order 2
ρ41111-11-111-1-1-11111-11111-1-1-1-1    linear of order 2
ρ511111-1-11-11-1-1-11-11-1-111-1-11-11    linear of order 2
ρ61111111-1-1-1-1-1-111-1-111-1-1-111-1    linear of order 2
ρ71111-11-1-1-1111-111-1111-1-11-1-11    linear of order 2
ρ81111-1-111-1-111-11-111-111-11-11-1    linear of order 2
ρ91111-1-1-1111-1-1-1-11-111-1-1-1111-1    linear of order 2
ρ101111-111-11-1-1-1-1-1-111-1-11-111-11    linear of order 2
ρ11111111-1-11111-1-1-11-1-1-11-1-1-11-1    linear of order 2
ρ1211111-1111-111-1-11-1-11-1-1-1-1-1-11    linear of order 2
ρ131111-1111-11111-1-1-1-1-1-1-11-11-1-1    linear of order 2
ρ141111-1-1-1-1-1-1111-111-11-111-1111    linear of order 2
ρ1511111-11-1-11-1-11-11111-1111-1-1-1    linear of order 2
ρ16111111-11-1-1-1-11-1-1-11-1-1-111-111    linear of order 2
ρ172-2-2200000000-202-20-20220000    orthogonal lifted from D4
ρ182-2-220000000020220-20-2-20000    orthogonal lifted from D4
ρ192-2-2200000000-20-22020-220000    orthogonal lifted from D4
ρ202-2-220000000020-2-20202-20000    orthogonal lifted from D4
ρ212-22-2000000-2202i00-2i0-2i002i000    complex lifted from C4oD4
ρ222-22-20000002-202i002i0-2i00-2i000    complex lifted from C4oD4
ρ232-22-20000002-20-2i00-2i02i002i000    complex lifted from C4oD4
ρ242-22-2000000-220-2i002i02i00-2i000    complex lifted from C4oD4
ρ2544-4-4000000000000000000000    orthogonal lifted from 2+ 1+4

Smallest permutation representation of Q8:6D4
On 32 points
Generators in S32
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 16 3 14)(2 15 4 13)(5 24 7 22)(6 23 8 21)(9 19 11 17)(10 18 12 20)(25 29 27 31)(26 32 28 30)
(1 31 12 8)(2 30 9 7)(3 29 10 6)(4 32 11 5)(13 26 17 22)(14 25 18 21)(15 28 19 24)(16 27 20 23)
(1 28)(2 25)(3 26)(4 27)(5 20)(6 17)(7 18)(8 19)(9 21)(10 22)(11 23)(12 24)(13 29)(14 30)(15 31)(16 32)

G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,16,3,14)(2,15,4,13)(5,24,7,22)(6,23,8,21)(9,19,11,17)(10,18,12,20)(25,29,27,31)(26,32,28,30), (1,31,12,8)(2,30,9,7)(3,29,10,6)(4,32,11,5)(13,26,17,22)(14,25,18,21)(15,28,19,24)(16,27,20,23), (1,28)(2,25)(3,26)(4,27)(5,20)(6,17)(7,18)(8,19)(9,21)(10,22)(11,23)(12,24)(13,29)(14,30)(15,31)(16,32)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,16,3,14)(2,15,4,13)(5,24,7,22)(6,23,8,21)(9,19,11,17)(10,18,12,20)(25,29,27,31)(26,32,28,30), (1,31,12,8)(2,30,9,7)(3,29,10,6)(4,32,11,5)(13,26,17,22)(14,25,18,21)(15,28,19,24)(16,27,20,23), (1,28)(2,25)(3,26)(4,27)(5,20)(6,17)(7,18)(8,19)(9,21)(10,22)(11,23)(12,24)(13,29)(14,30)(15,31)(16,32) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,16,3,14),(2,15,4,13),(5,24,7,22),(6,23,8,21),(9,19,11,17),(10,18,12,20),(25,29,27,31),(26,32,28,30)], [(1,31,12,8),(2,30,9,7),(3,29,10,6),(4,32,11,5),(13,26,17,22),(14,25,18,21),(15,28,19,24),(16,27,20,23)], [(1,28),(2,25),(3,26),(4,27),(5,20),(6,17),(7,18),(8,19),(9,21),(10,22),(11,23),(12,24),(13,29),(14,30),(15,31),(16,32)]])

Q8:6D4 is a maximal subgroup of
Q8:2SD16  Q8.D8  Q8:3SD16  Q8:8SD16  C42.507C23  C42.509C23  D4xC4oD4  C22.69C25  C22.76C25  C22.77C25  C4:2- 1+4  C22.87C25  C22.111C25  C22.113C25  SL2(F3):6D4
 Q8:D4p: Q8:D8  Q8:4D8  Q8:5D8  Q8:7D12  Q8:6D20  Q8:6D28 ...
 C2p.2+ 1+4: SD16:7D4  Q16:10D4  SD16:1D4  Q16:5D4  SD16:11D4  Q16:13D4  C42.469C23  C42.470C23 ...
Q8:6D4 is a maximal quotient of
C23.223C24  Q8xC4:C4  C23.236C24  C24.217C23  C24.219C23  C24.244C23  C24.249C23  C23.323C24  C24.259C23  C23.328C24  C24.263C23  C24.268C23  C23.345C24  C23.348C24  C23.354C24  C23.356C24  C23.367C24  C24.290C23  C23.379C24  C23.390C24  C23.412C24  C42.166D4  C42:20D4  C42.171D4  C42.35Q8  C24.327C23  C23.573C24  C24.389C23  C24.401C23  C23.605C24  C24.413C23  C23.621C24  C23.627C24  C23.630C24  C23.632C24  C23.633C24
 Q8:D4p: Q8:5D8  Q8:7D12  Q8:6D20  Q8:6D28 ...
 C2p.2+ 1+4: Q8:9SD16  C42.527C23  C42.528C23  Q8:6Q16  C42.530C23  C42.72C23  C42.73C23  C42.74C23 ...

Matrix representation of Q8:6D4 in GL4(F5) generated by

3000
0200
0040
0004
,
0100
4000
0040
0004
,
0200
2000
0012
0044
,
4000
0100
0043
0001
G:=sub<GL(4,GF(5))| [3,0,0,0,0,2,0,0,0,0,4,0,0,0,0,4],[0,4,0,0,1,0,0,0,0,0,4,0,0,0,0,4],[0,2,0,0,2,0,0,0,0,0,1,4,0,0,2,4],[4,0,0,0,0,1,0,0,0,0,4,0,0,0,3,1] >;

Q8:6D4 in GAP, Magma, Sage, TeX

Q_8\rtimes_6D_4
% in TeX

G:=Group("Q8:6D4");
// GroupNames label

G:=SmallGroup(64,231);
// by ID

G=gap.SmallGroup(64,231);
# by ID

G:=PCGroup([6,-2,2,2,2,-2,2,217,103,650,86,297,69]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^4=d^2=1,b^2=a^2,b*a*b^-1=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

Export

Character table of Q8:6D4 in TeX

׿
x
:
Z
F
o
wr
Q
<