p-group, metabelian, nilpotent (class 3), monomial
Aliases: D4⋊3D4, Q8⋊3D4, C23.14D4, (C2×D8)⋊2C2, C4⋊D4⋊2C2, C22⋊C8⋊5C2, C4.21(C2×D4), D4⋊C4⋊8C2, Q8⋊C4⋊4C2, (C2×SD16)⋊8C2, C2.6(C4○D8), (C2×C4).104D4, C4⋊C4.2C22, (C2×C8).1C22, C2.10C22≀C2, C2.7(C8⋊C22), (C2×C4).83C23, (C2×D4).6C22, C22.79(C2×D4), (C2×Q8).49C22, (C22×C4).44C22, (C2×C4○D4)⋊1C2, SmallGroup(64,130)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4⋊D4
G = < a,b,c,d | a4=b2=c4=d2=1, bab=cac-1=dad=a-1, cbc-1=a-1b, dbd=ab, dcd=c-1 >
Subgroups: 161 in 81 conjugacy classes, 29 normal (25 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C22⋊C4, C4⋊C4, C2×C8, D8, SD16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C22⋊C8, D4⋊C4, Q8⋊C4, C4⋊D4, C2×D8, C2×SD16, C2×C4○D4, D4⋊D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C22≀C2, C4○D8, C8⋊C22, D4⋊D4
Character table of D4⋊D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | -2 | 2 | -2 | 2 | 0 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 0 | -2 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | 0 | -√2 | √2 | √-2 | -√-2 | complex lifted from C4○D8 |
ρ16 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | 0 | √2 | -√2 | √-2 | -√-2 | complex lifted from C4○D8 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | 0 | -√2 | √2 | -√-2 | √-2 | complex lifted from C4○D8 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | 0 | √2 | -√2 | -√-2 | √-2 | complex lifted from C4○D8 |
ρ19 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 27)(2 26)(3 25)(4 28)(5 15)(6 14)(7 13)(8 16)(9 23)(10 22)(11 21)(12 24)(17 30)(18 29)(19 32)(20 31)
(1 13 9 19)(2 16 10 18)(3 15 11 17)(4 14 12 20)(5 22 30 26)(6 21 31 25)(7 24 32 28)(8 23 29 27)
(2 4)(5 29)(6 32)(7 31)(8 30)(10 12)(13 19)(14 18)(15 17)(16 20)(21 24)(22 23)(25 28)(26 27)
G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,27)(2,26)(3,25)(4,28)(5,15)(6,14)(7,13)(8,16)(9,23)(10,22)(11,21)(12,24)(17,30)(18,29)(19,32)(20,31), (1,13,9,19)(2,16,10,18)(3,15,11,17)(4,14,12,20)(5,22,30,26)(6,21,31,25)(7,24,32,28)(8,23,29,27), (2,4)(5,29)(6,32)(7,31)(8,30)(10,12)(13,19)(14,18)(15,17)(16,20)(21,24)(22,23)(25,28)(26,27)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,27)(2,26)(3,25)(4,28)(5,15)(6,14)(7,13)(8,16)(9,23)(10,22)(11,21)(12,24)(17,30)(18,29)(19,32)(20,31), (1,13,9,19)(2,16,10,18)(3,15,11,17)(4,14,12,20)(5,22,30,26)(6,21,31,25)(7,24,32,28)(8,23,29,27), (2,4)(5,29)(6,32)(7,31)(8,30)(10,12)(13,19)(14,18)(15,17)(16,20)(21,24)(22,23)(25,28)(26,27) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,27),(2,26),(3,25),(4,28),(5,15),(6,14),(7,13),(8,16),(9,23),(10,22),(11,21),(12,24),(17,30),(18,29),(19,32),(20,31)], [(1,13,9,19),(2,16,10,18),(3,15,11,17),(4,14,12,20),(5,22,30,26),(6,21,31,25),(7,24,32,28),(8,23,29,27)], [(2,4),(5,29),(6,32),(7,31),(8,30),(10,12),(13,19),(14,18),(15,17),(16,20),(21,24),(22,23),(25,28),(26,27)]])
D4⋊D4 is a maximal subgroup of
C24.103D4 C24.105D4 (C2×Q8)⋊16D4 (C2×Q8)⋊17D4 C42.384D4 C42.450D4 C42.229D4 C42.233D4 C42.353C23 C42.358C23 C42.359C23 C42.270D4 C42.411C23 SD16⋊8D4 Q16⋊4D4 SD16⋊10D4 C42.468C23 C42.42C23 C42.479C23 SL2(𝔽3)⋊D4
D4p⋊D4: D8⋊9D4 D8⋊10D4 D8⋊4D4 D8⋊12D4 D12⋊14D4 Q8⋊4D12 D12⋊17D4 D12⋊7D4 ...
(Cp×D4)⋊D4: C24.104D4 C4○D4⋊D4 (C2×D4)⋊21D4 D4⋊3D12 Dic6⋊D4 (C3×D4)⋊14D4 D4⋊3D20 Dic10⋊D4 ...
C8⋊pD4⋊C2: C24.121D4 C24.124D4 C24.127D4 C24.130D4 C4.2+ 1+4 C4.182+ 1+4 C4.192+ 1+4 C42.265D4 ...
D4⋊D4 is a maximal quotient of
C24.65D4 C24.74D4
D4⋊D4p: D4⋊3D8 D4⋊3D12 D4⋊3D20 D4⋊3D28 ...
(Cp×D4)⋊D4: C24.9D4 C23⋊2D8 Dic6⋊D4 (C3×D4)⋊14D4 Dic10⋊D4 (C5×D4)⋊14D4 Dic14⋊D4 (C7×D4)⋊14D4 ...
Q8⋊D4p: Q8⋊D8 Q8⋊4D12 D20⋊4D4 D28⋊4D4 ...
(Cp×Q8)⋊D4: C23⋊3SD16 D12⋊7D4 D20⋊7D4 D28⋊7D4 ...
C4⋊C4.D2p: C4⋊C4.D4 C4⋊C4.12D4 C24.15D4 C42.181C23 D4⋊SD16 C42.185C23 Q8⋊6SD16 C42.189C23 ...
(C2×C8).D2p: (C22×D8).C2 D12⋊14D4 D20⋊14D4 D28⋊14D4 ...
Matrix representation of D4⋊D4 ►in GL4(𝔽17) generated by
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 3 | 14 |
0 | 0 | 14 | 14 |
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 0 | 13 |
0 | 0 | 13 | 0 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 16 |
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,0,16,0,0,1,0],[0,1,0,0,1,0,0,0,0,0,3,14,0,0,14,14],[0,16,0,0,1,0,0,0,0,0,0,13,0,0,13,0],[1,0,0,0,0,16,0,0,0,0,1,0,0,0,0,16] >;
D4⋊D4 in GAP, Magma, Sage, TeX
D_4\rtimes D_4
% in TeX
G:=Group("D4:D4");
// GroupNames label
G:=SmallGroup(64,130);
// by ID
G=gap.SmallGroup(64,130);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,121,362,158,963,489,117]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^4=d^2=1,b*a*b=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=a^-1*b,d*b*d=a*b,d*c*d=c^-1>;
// generators/relations
Export