p-group, metabelian, nilpotent (class 3), monomial
Aliases: D4.7D4, Q8.7D4, C23.15D4, C22⋊C8⋊6C2, (C2×Q16)⋊2C2, C4.24(C2×D4), C22⋊Q8⋊2C2, D4⋊C4⋊5C2, C2.7(C4○D8), (C2×C4).105D4, C4⋊C4.4C22, Q8⋊C4⋊10C2, C2.13C22≀C2, (C2×SD16)⋊10C2, (C2×C8).28C22, (C2×C4).86C23, C22.82(C2×D4), (C2×Q8).4C22, (C2×D4).55C22, C2.8(C8.C22), (C22×C4).47C22, (C2×C4○D4).8C2, SmallGroup(64,133)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4.7D4
G = < a,b,c,d | a4=b2=c4=1, d2=a2, bab=cac-1=dad-1=a-1, cbc-1=dbd-1=ab, dcd-1=c-1 >
Subgroups: 137 in 76 conjugacy classes, 29 normal (25 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C22⋊C8, D4⋊C4, Q8⋊C4, C22⋊Q8, C2×SD16, C2×Q16, C2×C4○D4, D4.7D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C22≀C2, C4○D8, C8.C22, D4.7D4
Character table of D4.7D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | 2 | -2 | 2 | 0 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | -2 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | -2 | 2 | -2 | -2 | 0 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | 0 | -√-2 | √2 | -√2 | √-2 | complex lifted from C4○D8 |
ρ16 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | 0 | √-2 | √2 | -√2 | -√-2 | complex lifted from C4○D8 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | 0 | √-2 | -√2 | √2 | -√-2 | complex lifted from C4○D8 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | 0 | -√-2 | -√2 | √2 | √-2 | complex lifted from C4○D8 |
ρ19 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 4)(2 3)(5 7)(9 12)(10 11)(13 14)(15 16)(17 18)(19 20)(22 24)(26 28)(30 32)
(1 7 11 30)(2 6 12 29)(3 5 9 32)(4 8 10 31)(13 27 17 21)(14 26 18 24)(15 25 19 23)(16 28 20 22)
(1 24 3 22)(2 23 4 21)(5 20 7 18)(6 19 8 17)(9 28 11 26)(10 27 12 25)(13 29 15 31)(14 32 16 30)
G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,4)(2,3)(5,7)(9,12)(10,11)(13,14)(15,16)(17,18)(19,20)(22,24)(26,28)(30,32), (1,7,11,30)(2,6,12,29)(3,5,9,32)(4,8,10,31)(13,27,17,21)(14,26,18,24)(15,25,19,23)(16,28,20,22), (1,24,3,22)(2,23,4,21)(5,20,7,18)(6,19,8,17)(9,28,11,26)(10,27,12,25)(13,29,15,31)(14,32,16,30)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,4)(2,3)(5,7)(9,12)(10,11)(13,14)(15,16)(17,18)(19,20)(22,24)(26,28)(30,32), (1,7,11,30)(2,6,12,29)(3,5,9,32)(4,8,10,31)(13,27,17,21)(14,26,18,24)(15,25,19,23)(16,28,20,22), (1,24,3,22)(2,23,4,21)(5,20,7,18)(6,19,8,17)(9,28,11,26)(10,27,12,25)(13,29,15,31)(14,32,16,30) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,4),(2,3),(5,7),(9,12),(10,11),(13,14),(15,16),(17,18),(19,20),(22,24),(26,28),(30,32)], [(1,7,11,30),(2,6,12,29),(3,5,9,32),(4,8,10,31),(13,27,17,21),(14,26,18,24),(15,25,19,23),(16,28,20,22)], [(1,24,3,22),(2,23,4,21),(5,20,7,18),(6,19,8,17),(9,28,11,26),(10,27,12,25),(13,29,15,31),(14,32,16,30)]])
D4.7D4 is a maximal subgroup of
C42.229D4 C42.234D4 C24.123D4 C24.129D4 C42.270D4 C42.274D4 SL2(𝔽3).D4
(Cp×D4).D4: D4.(C2×D4) Q8.(C2×D4) (C2×Q8)⋊17D4 C4.162+ 1+4 C4.182+ 1+4 C4.192+ 1+4 SD16⋊6D4 D8⋊10D4 ...
C8⋊pD4⋊C2: C24.124D4 C24.130D4 C42.268D4 C42.277D4 C42.408C23 C42.410C23 ...
C4⋊C4.D2p: C42.354C23 C42.358C23 C42.359C23 C42.409C23 C42.411C23 Q8.11D12 D12.37D4 Q8.D20 ...
(C2p×Q16)⋊C2: C42.384D4 C42.451D4 D12.17D4 D20.17D4 D28.17D4 ...
C2p.C22≀C2: C24.103D4 C24.104D4 C24.106D4 (C2×D4)⋊21D4 D12.32D4 D20.32D4 D28.32D4 ...
D4.7D4 is a maximal quotient of
D12.32D4 D12.17D4 D20.32D4 D20.17D4 D28.32D4 D28.17D4
Q8.D4p: Q8.D8 Q8.11D12 Q8.D20 Q8.D28 ...
D4.D4p: D4.7D8 D4.D12 D4.D20 D4.D28 ...
(Cp×D4).D4: C4⋊C4.6D4 C24.12D4 C4⋊C4.18D4 C24.18D4 C42.191C23 Q8⋊2SD16 D4⋊Q16 C42.195C23 ...
C4⋊C4.D2p: Q8.Q16 Q8.SD16 C24.71D4 Q8⋊C4⋊C4 C24.73D4 (C2×C4)⋊9Q16 C23⋊2Q16 C4⋊C4.85D4 ...
Matrix representation of D4.7D4 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
12 | 3 | 0 | 0 |
14 | 5 | 0 | 0 |
0 | 0 | 14 | 3 |
0 | 0 | 3 | 3 |
14 | 5 | 0 | 0 |
12 | 3 | 0 | 0 |
0 | 0 | 12 | 5 |
0 | 0 | 5 | 5 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,0,16,0,0,1,0],[1,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0],[12,14,0,0,3,5,0,0,0,0,14,3,0,0,3,3],[14,12,0,0,5,3,0,0,0,0,12,5,0,0,5,5] >;
D4.7D4 in GAP, Magma, Sage, TeX
D_4._7D_4
% in TeX
G:=Group("D4.7D4");
// GroupNames label
G:=SmallGroup(64,133);
// by ID
G=gap.SmallGroup(64,133);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,192,121,362,158,963,489,117]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^4=1,d^2=a^2,b*a*b=c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=a*b,d*c*d^-1=c^-1>;
// generators/relations
Export