# Extensions 1→N→G→Q→1 with N=C2×D4 and Q=C2

Direct product G=N×Q with N=C2×D4 and Q=C2
dρLabelID
C22×D416C2^2xD432,46

Semidirect products G=N:Q with N=C2×D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D4)⋊1C2 = C22≀C2φ: C2/C1C2 ⊆ Out C2×D48(C2xD4):1C232,27
(C2×D4)⋊2C2 = C4⋊D4φ: C2/C1C2 ⊆ Out C2×D416(C2xD4):2C232,28
(C2×D4)⋊3C2 = C41D4φ: C2/C1C2 ⊆ Out C2×D416(C2xD4):3C232,34
(C2×D4)⋊4C2 = C2×D8φ: C2/C1C2 ⊆ Out C2×D416(C2xD4):4C232,39
(C2×D4)⋊5C2 = C8⋊C22φ: C2/C1C2 ⊆ Out C2×D484+(C2xD4):5C232,43
(C2×D4)⋊6C2 = 2+ 1+4φ: C2/C1C2 ⊆ Out C2×D484+(C2xD4):6C232,49
(C2×D4)⋊7C2 = C2×C4○D4φ: trivial image16(C2xD4):7C232,48

Non-split extensions G=N.Q with N=C2×D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D4).1C2 = C23⋊C4φ: C2/C1C2 ⊆ Out C2×D484+(C2xD4).1C232,6
(C2×D4).2C2 = C4.D4φ: C2/C1C2 ⊆ Out C2×D484+(C2xD4).2C232,7
(C2×D4).3C2 = D4⋊C4φ: C2/C1C2 ⊆ Out C2×D416(C2xD4).3C232,9
(C2×D4).4C2 = C22.D4φ: C2/C1C2 ⊆ Out C2×D416(C2xD4).4C232,30
(C2×D4).5C2 = C4.4D4φ: C2/C1C2 ⊆ Out C2×D416(C2xD4).5C232,31
(C2×D4).6C2 = C2×SD16φ: C2/C1C2 ⊆ Out C2×D416(C2xD4).6C232,40
(C2×D4).7C2 = C4×D4φ: trivial image16(C2xD4).7C232,25

׿
×
𝔽