Copied to
clipboard

G = C7⋊C18order 126 = 2·32·7

The semidirect product of C7 and C18 acting via C18/C3=C6

metacyclic, supersoluble, monomial, Z-group

Aliases: C7⋊C18, D7⋊C9, C3.F7, C21.C6, C7⋊C9⋊C2, (C3×D7).C3, SmallGroup(126,1)

Series: Derived Chief Lower central Upper central

C1C7 — C7⋊C18
C1C7C21C7⋊C9 — C7⋊C18
C7 — C7⋊C18
C1C3

Generators and relations for C7⋊C18
 G = < a,b | a7=b18=1, bab-1=a3 >

7C2
7C6
7C9
7C18

Character table of C7⋊C18

 class 123A3B6A6B79A9B9C9D9E9F18A18B18C18D18E18F21A21B
 size 171177677777777777766
ρ1111111111111111111111    trivial
ρ21-111-1-11111111-1-1-1-1-1-111    linear of order 2
ρ31-111-1-11ζ32ζ3ζ32ζ3ζ3ζ32ζ6ζ65ζ65ζ65ζ6ζ611    linear of order 6
ρ41-111-1-11ζ3ζ32ζ3ζ32ζ32ζ3ζ65ζ6ζ6ζ6ζ65ζ6511    linear of order 6
ρ51111111ζ32ζ3ζ32ζ3ζ3ζ32ζ32ζ3ζ3ζ3ζ32ζ3211    linear of order 3
ρ61111111ζ3ζ32ζ3ζ32ζ32ζ3ζ3ζ32ζ32ζ32ζ3ζ311    linear of order 3
ρ71-1ζ32ζ3ζ6ζ651ζ98ζ97ζ92ζ9ζ94ζ9592979949598ζ3ζ32    linear of order 18
ρ811ζ3ζ32ζ3ζ321ζ94ζ98ζ9ζ95ζ92ζ97ζ9ζ98ζ95ζ92ζ97ζ94ζ32ζ3    linear of order 9
ρ91-1ζ32ζ3ζ6ζ651ζ95ζ9ζ98ζ94ζ97ζ9298994979295ζ3ζ32    linear of order 18
ρ101-1ζ3ζ32ζ65ζ61ζ94ζ98ζ9ζ95ζ92ζ9799895929794ζ32ζ3    linear of order 18
ρ1111ζ32ζ3ζ32ζ31ζ92ζ94ζ95ζ97ζ9ζ98ζ95ζ94ζ97ζ9ζ98ζ92ζ3ζ32    linear of order 9
ρ121-1ζ3ζ32ζ65ζ61ζ9ζ92ζ97ζ98ζ95ζ9497929895949ζ32ζ3    linear of order 18
ρ1311ζ3ζ32ζ3ζ321ζ9ζ92ζ97ζ98ζ95ζ94ζ97ζ92ζ98ζ95ζ94ζ9ζ32ζ3    linear of order 9
ρ141-1ζ32ζ3ζ6ζ651ζ92ζ94ζ95ζ97ζ9ζ9895949799892ζ3ζ32    linear of order 18
ρ1511ζ32ζ3ζ32ζ31ζ98ζ97ζ92ζ9ζ94ζ95ζ92ζ97ζ9ζ94ζ95ζ98ζ3ζ32    linear of order 9
ρ1611ζ32ζ3ζ32ζ31ζ95ζ9ζ98ζ94ζ97ζ92ζ98ζ9ζ94ζ97ζ92ζ95ζ3ζ32    linear of order 9
ρ171-1ζ3ζ32ζ65ζ61ζ97ζ95ζ94ζ92ζ98ζ994959298997ζ32ζ3    linear of order 18
ρ1811ζ3ζ32ζ3ζ321ζ97ζ95ζ94ζ92ζ98ζ9ζ94ζ95ζ92ζ98ζ9ζ97ζ32ζ3    linear of order 9
ρ19606600-1000000000000-1-1    orthogonal lifted from F7
ρ2060-3-3-3-3+3-300-1000000000000ζ65ζ6    complex faithful, Schur index 3
ρ2160-3+3-3-3-3-300-1000000000000ζ6ζ65    complex faithful, Schur index 3

Smallest permutation representation of C7⋊C18
On 63 points
Generators in S63
(1 23 49 39 30 58 14)(2 40 15 50 59 24 31)(3 51 32 16 25 41 60)(4 17 61 33 42 52 26)(5 34 27 62 53 18 43)(6 63 44 10 19 35 54)(7 11 55 45 36 46 20)(8 28 21 56 47 12 37)(9 57 38 22 13 29 48)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)

G:=sub<Sym(63)| (1,23,49,39,30,58,14)(2,40,15,50,59,24,31)(3,51,32,16,25,41,60)(4,17,61,33,42,52,26)(5,34,27,62,53,18,43)(6,63,44,10,19,35,54)(7,11,55,45,36,46,20)(8,28,21,56,47,12,37)(9,57,38,22,13,29,48), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)>;

G:=Group( (1,23,49,39,30,58,14)(2,40,15,50,59,24,31)(3,51,32,16,25,41,60)(4,17,61,33,42,52,26)(5,34,27,62,53,18,43)(6,63,44,10,19,35,54)(7,11,55,45,36,46,20)(8,28,21,56,47,12,37)(9,57,38,22,13,29,48), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63) );

G=PermutationGroup([[(1,23,49,39,30,58,14),(2,40,15,50,59,24,31),(3,51,32,16,25,41,60),(4,17,61,33,42,52,26),(5,34,27,62,53,18,43),(6,63,44,10,19,35,54),(7,11,55,45,36,46,20),(8,28,21,56,47,12,37),(9,57,38,22,13,29,48)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)]])

C7⋊C18 is a maximal subgroup of   C9×F7  C93F7  C94F7  C32.F7  D21⋊C9
C7⋊C18 is a maximal quotient of   C7⋊C36  C7⋊C54  D21⋊C9

Matrix representation of C7⋊C18 in GL7(𝔽127)

1000000
0010000
0001000
0000100
0000010
0000001
0126126126126126126
,
24000000
02901057676105
002951805129
0987647477698
029518051290
01057676105029
022512209898

G:=sub<GL(7,GF(127))| [1,0,0,0,0,0,0,0,0,0,0,0,0,126,0,1,0,0,0,0,126,0,0,1,0,0,0,126,0,0,0,1,0,0,126,0,0,0,0,1,0,126,0,0,0,0,0,1,126],[24,0,0,0,0,0,0,0,29,0,98,29,105,22,0,0,29,76,51,76,51,0,105,51,47,80,76,22,0,76,80,47,51,105,0,0,76,51,76,29,0,98,0,105,29,98,0,29,98] >;

C7⋊C18 in GAP, Magma, Sage, TeX

C_7\rtimes C_{18}
% in TeX

G:=Group("C7:C18");
// GroupNames label

G:=SmallGroup(126,1);
// by ID

G=gap.SmallGroup(126,1);
# by ID

G:=PCGroup([4,-2,-3,-3,-7,29,1731,583]);
// Polycyclic

G:=Group<a,b|a^7=b^18=1,b*a*b^-1=a^3>;
// generators/relations

Export

Subgroup lattice of C7⋊C18 in TeX
Character table of C7⋊C18 in TeX

׿
×
𝔽