metacyclic, supersoluble, monomial, Z-group
Aliases: C7⋊C18, D7⋊C9, C3.F7, C21.C6, C7⋊C9⋊C2, (C3×D7).C3, SmallGroup(126,1)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C7 — C21 — C7⋊C9 — C7⋊C18 |
C7 — C7⋊C18 |
Generators and relations for C7⋊C18
G = < a,b | a7=b18=1, bab-1=a3 >
Character table of C7⋊C18
class | 1 | 2 | 3A | 3B | 6A | 6B | 7 | 9A | 9B | 9C | 9D | 9E | 9F | 18A | 18B | 18C | 18D | 18E | 18F | 21A | 21B | |
size | 1 | 7 | 1 | 1 | 7 | 7 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ6 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | 1 | 1 | linear of order 6 |
ρ4 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ65 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | 1 | 1 | linear of order 6 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | 1 | linear of order 3 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | 1 | linear of order 3 |
ρ7 | 1 | -1 | ζ32 | ζ3 | ζ6 | ζ65 | 1 | ζ98 | ζ97 | ζ92 | ζ9 | ζ94 | ζ95 | -ζ92 | -ζ97 | -ζ9 | -ζ94 | -ζ95 | -ζ98 | ζ3 | ζ32 | linear of order 18 |
ρ8 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ94 | ζ98 | ζ9 | ζ95 | ζ92 | ζ97 | ζ9 | ζ98 | ζ95 | ζ92 | ζ97 | ζ94 | ζ32 | ζ3 | linear of order 9 |
ρ9 | 1 | -1 | ζ32 | ζ3 | ζ6 | ζ65 | 1 | ζ95 | ζ9 | ζ98 | ζ94 | ζ97 | ζ92 | -ζ98 | -ζ9 | -ζ94 | -ζ97 | -ζ92 | -ζ95 | ζ3 | ζ32 | linear of order 18 |
ρ10 | 1 | -1 | ζ3 | ζ32 | ζ65 | ζ6 | 1 | ζ94 | ζ98 | ζ9 | ζ95 | ζ92 | ζ97 | -ζ9 | -ζ98 | -ζ95 | -ζ92 | -ζ97 | -ζ94 | ζ32 | ζ3 | linear of order 18 |
ρ11 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ92 | ζ94 | ζ95 | ζ97 | ζ9 | ζ98 | ζ95 | ζ94 | ζ97 | ζ9 | ζ98 | ζ92 | ζ3 | ζ32 | linear of order 9 |
ρ12 | 1 | -1 | ζ3 | ζ32 | ζ65 | ζ6 | 1 | ζ9 | ζ92 | ζ97 | ζ98 | ζ95 | ζ94 | -ζ97 | -ζ92 | -ζ98 | -ζ95 | -ζ94 | -ζ9 | ζ32 | ζ3 | linear of order 18 |
ρ13 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ9 | ζ92 | ζ97 | ζ98 | ζ95 | ζ94 | ζ97 | ζ92 | ζ98 | ζ95 | ζ94 | ζ9 | ζ32 | ζ3 | linear of order 9 |
ρ14 | 1 | -1 | ζ32 | ζ3 | ζ6 | ζ65 | 1 | ζ92 | ζ94 | ζ95 | ζ97 | ζ9 | ζ98 | -ζ95 | -ζ94 | -ζ97 | -ζ9 | -ζ98 | -ζ92 | ζ3 | ζ32 | linear of order 18 |
ρ15 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ98 | ζ97 | ζ92 | ζ9 | ζ94 | ζ95 | ζ92 | ζ97 | ζ9 | ζ94 | ζ95 | ζ98 | ζ3 | ζ32 | linear of order 9 |
ρ16 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ95 | ζ9 | ζ98 | ζ94 | ζ97 | ζ92 | ζ98 | ζ9 | ζ94 | ζ97 | ζ92 | ζ95 | ζ3 | ζ32 | linear of order 9 |
ρ17 | 1 | -1 | ζ3 | ζ32 | ζ65 | ζ6 | 1 | ζ97 | ζ95 | ζ94 | ζ92 | ζ98 | ζ9 | -ζ94 | -ζ95 | -ζ92 | -ζ98 | -ζ9 | -ζ97 | ζ32 | ζ3 | linear of order 18 |
ρ18 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ97 | ζ95 | ζ94 | ζ92 | ζ98 | ζ9 | ζ94 | ζ95 | ζ92 | ζ98 | ζ9 | ζ97 | ζ32 | ζ3 | linear of order 9 |
ρ19 | 6 | 0 | 6 | 6 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from F7 |
ρ20 | 6 | 0 | -3-3√-3 | -3+3√-3 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | complex faithful, Schur index 3 |
ρ21 | 6 | 0 | -3+3√-3 | -3-3√-3 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | complex faithful, Schur index 3 |
(1 23 49 39 30 58 14)(2 40 15 50 59 24 31)(3 51 32 16 25 41 60)(4 17 61 33 42 52 26)(5 34 27 62 53 18 43)(6 63 44 10 19 35 54)(7 11 55 45 36 46 20)(8 28 21 56 47 12 37)(9 57 38 22 13 29 48)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)
G:=sub<Sym(63)| (1,23,49,39,30,58,14)(2,40,15,50,59,24,31)(3,51,32,16,25,41,60)(4,17,61,33,42,52,26)(5,34,27,62,53,18,43)(6,63,44,10,19,35,54)(7,11,55,45,36,46,20)(8,28,21,56,47,12,37)(9,57,38,22,13,29,48), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)>;
G:=Group( (1,23,49,39,30,58,14)(2,40,15,50,59,24,31)(3,51,32,16,25,41,60)(4,17,61,33,42,52,26)(5,34,27,62,53,18,43)(6,63,44,10,19,35,54)(7,11,55,45,36,46,20)(8,28,21,56,47,12,37)(9,57,38,22,13,29,48), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63) );
G=PermutationGroup([[(1,23,49,39,30,58,14),(2,40,15,50,59,24,31),(3,51,32,16,25,41,60),(4,17,61,33,42,52,26),(5,34,27,62,53,18,43),(6,63,44,10,19,35,54),(7,11,55,45,36,46,20),(8,28,21,56,47,12,37),(9,57,38,22,13,29,48)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)]])
C7⋊C18 is a maximal subgroup of
C9×F7 C9⋊3F7 C9⋊4F7 C32.F7 D21⋊C9
C7⋊C18 is a maximal quotient of C7⋊C36 C7⋊C54 D21⋊C9
Matrix representation of C7⋊C18 ►in GL7(𝔽127)
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 126 | 126 | 126 | 126 | 126 | 126 |
24 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 29 | 0 | 105 | 76 | 76 | 105 |
0 | 0 | 29 | 51 | 80 | 51 | 29 |
0 | 98 | 76 | 47 | 47 | 76 | 98 |
0 | 29 | 51 | 80 | 51 | 29 | 0 |
0 | 105 | 76 | 76 | 105 | 0 | 29 |
0 | 22 | 51 | 22 | 0 | 98 | 98 |
G:=sub<GL(7,GF(127))| [1,0,0,0,0,0,0,0,0,0,0,0,0,126,0,1,0,0,0,0,126,0,0,1,0,0,0,126,0,0,0,1,0,0,126,0,0,0,0,1,0,126,0,0,0,0,0,1,126],[24,0,0,0,0,0,0,0,29,0,98,29,105,22,0,0,29,76,51,76,51,0,105,51,47,80,76,22,0,76,80,47,51,105,0,0,76,51,76,29,0,98,0,105,29,98,0,29,98] >;
C7⋊C18 in GAP, Magma, Sage, TeX
C_7\rtimes C_{18}
% in TeX
G:=Group("C7:C18");
// GroupNames label
G:=SmallGroup(126,1);
// by ID
G=gap.SmallGroup(126,1);
# by ID
G:=PCGroup([4,-2,-3,-3,-7,29,1731,583]);
// Polycyclic
G:=Group<a,b|a^7=b^18=1,b*a*b^-1=a^3>;
// generators/relations
Export
Subgroup lattice of C7⋊C18 in TeX
Character table of C7⋊C18 in TeX