metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: C5⋊C16, C10.C8, C4.2F5, C20.2C4, C2.(C5⋊C8), C5⋊2C8.2C2, SmallGroup(80,3)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — C20 — C5⋊2C8 — C5⋊C16 |
C5 — C5⋊C16 |
Generators and relations for C5⋊C16
G = < a,b | a5=b16=1, bab-1=a3 >
Character table of C5⋊C16
class | 1 | 2 | 4A | 4B | 5 | 8A | 8B | 8C | 8D | 10 | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | 20A | 20B | |
size | 1 | 1 | 1 | 1 | 4 | 5 | 5 | 5 | 5 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -i | i | i | i | -i | -i | -i | i | 1 | 1 | linear of order 4 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | i | -i | -i | -i | i | i | i | -i | 1 | 1 | linear of order 4 |
ρ5 | 1 | 1 | -1 | -1 | 1 | i | -i | -i | i | 1 | ζ85 | ζ83 | ζ87 | ζ87 | ζ8 | ζ8 | ζ85 | ζ83 | -1 | -1 | linear of order 8 |
ρ6 | 1 | 1 | -1 | -1 | 1 | i | -i | -i | i | 1 | ζ8 | ζ87 | ζ83 | ζ83 | ζ85 | ζ85 | ζ8 | ζ87 | -1 | -1 | linear of order 8 |
ρ7 | 1 | 1 | -1 | -1 | 1 | -i | i | i | -i | 1 | ζ87 | ζ8 | ζ85 | ζ85 | ζ83 | ζ83 | ζ87 | ζ8 | -1 | -1 | linear of order 8 |
ρ8 | 1 | 1 | -1 | -1 | 1 | -i | i | i | -i | 1 | ζ83 | ζ85 | ζ8 | ζ8 | ζ87 | ζ87 | ζ83 | ζ85 | -1 | -1 | linear of order 8 |
ρ9 | 1 | -1 | i | -i | 1 | ζ1614 | ζ162 | ζ1610 | ζ166 | -1 | ζ1611 | ζ1613 | ζ169 | ζ16 | ζ1615 | ζ167 | ζ163 | ζ165 | -i | i | linear of order 16 |
ρ10 | 1 | -1 | i | -i | 1 | ζ1614 | ζ162 | ζ1610 | ζ166 | -1 | ζ163 | ζ165 | ζ16 | ζ169 | ζ167 | ζ1615 | ζ1611 | ζ1613 | -i | i | linear of order 16 |
ρ11 | 1 | -1 | -i | i | 1 | ζ1610 | ζ166 | ζ1614 | ζ162 | -1 | ζ169 | ζ1615 | ζ163 | ζ1611 | ζ165 | ζ1613 | ζ16 | ζ167 | i | -i | linear of order 16 |
ρ12 | 1 | -1 | -i | i | 1 | ζ1610 | ζ166 | ζ1614 | ζ162 | -1 | ζ16 | ζ167 | ζ1611 | ζ163 | ζ1613 | ζ165 | ζ169 | ζ1615 | i | -i | linear of order 16 |
ρ13 | 1 | -1 | i | -i | 1 | ζ166 | ζ1610 | ζ162 | ζ1614 | -1 | ζ1615 | ζ169 | ζ165 | ζ1613 | ζ163 | ζ1611 | ζ167 | ζ16 | -i | i | linear of order 16 |
ρ14 | 1 | -1 | i | -i | 1 | ζ166 | ζ1610 | ζ162 | ζ1614 | -1 | ζ167 | ζ16 | ζ1613 | ζ165 | ζ1611 | ζ163 | ζ1615 | ζ169 | -i | i | linear of order 16 |
ρ15 | 1 | -1 | -i | i | 1 | ζ162 | ζ1614 | ζ166 | ζ1610 | -1 | ζ1613 | ζ1611 | ζ1615 | ζ167 | ζ169 | ζ16 | ζ165 | ζ163 | i | -i | linear of order 16 |
ρ16 | 1 | -1 | -i | i | 1 | ζ162 | ζ1614 | ζ166 | ζ1610 | -1 | ζ165 | ζ163 | ζ167 | ζ1615 | ζ16 | ζ169 | ζ1613 | ζ1611 | i | -i | linear of order 16 |
ρ17 | 4 | 4 | 4 | 4 | -1 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from F5 |
ρ18 | 4 | 4 | -4 | -4 | -1 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | symplectic lifted from C5⋊C8, Schur index 2 |
ρ19 | 4 | -4 | 4i | -4i | -1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | i | -i | complex faithful, Schur index 4 |
ρ20 | 4 | -4 | -4i | 4i | -1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -i | i | complex faithful, Schur index 4 |
(1 72 25 45 59)(2 46 73 60 26)(3 61 47 27 74)(4 28 62 75 48)(5 76 29 33 63)(6 34 77 64 30)(7 49 35 31 78)(8 32 50 79 36)(9 80 17 37 51)(10 38 65 52 18)(11 53 39 19 66)(12 20 54 67 40)(13 68 21 41 55)(14 42 69 56 22)(15 57 43 23 70)(16 24 58 71 44)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
G:=sub<Sym(80)| (1,72,25,45,59)(2,46,73,60,26)(3,61,47,27,74)(4,28,62,75,48)(5,76,29,33,63)(6,34,77,64,30)(7,49,35,31,78)(8,32,50,79,36)(9,80,17,37,51)(10,38,65,52,18)(11,53,39,19,66)(12,20,54,67,40)(13,68,21,41,55)(14,42,69,56,22)(15,57,43,23,70)(16,24,58,71,44), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)>;
G:=Group( (1,72,25,45,59)(2,46,73,60,26)(3,61,47,27,74)(4,28,62,75,48)(5,76,29,33,63)(6,34,77,64,30)(7,49,35,31,78)(8,32,50,79,36)(9,80,17,37,51)(10,38,65,52,18)(11,53,39,19,66)(12,20,54,67,40)(13,68,21,41,55)(14,42,69,56,22)(15,57,43,23,70)(16,24,58,71,44), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80) );
G=PermutationGroup([[(1,72,25,45,59),(2,46,73,60,26),(3,61,47,27,74),(4,28,62,75,48),(5,76,29,33,63),(6,34,77,64,30),(7,49,35,31,78),(8,32,50,79,36),(9,80,17,37,51),(10,38,65,52,18),(11,53,39,19,66),(12,20,54,67,40),(13,68,21,41,55),(14,42,69,56,22),(15,57,43,23,70),(16,24,58,71,44)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)]])
C5⋊C16 is a maximal subgroup of
D5⋊C16 C8.F5 C20.C8 C15⋊C16 C25⋊C16 C52⋊3C16 C52⋊4C16 C52⋊5C16
C5⋊C16 is a maximal quotient of
C5⋊C32 C15⋊C16 C25⋊C16 C52⋊3C16 C52⋊4C16 C52⋊5C16
Matrix representation of C5⋊C16 ►in GL4(𝔽241) generated by
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
240 | 240 | 240 | 240 |
183 | 221 | 133 | 90 |
153 | 110 | 20 | 203 |
151 | 93 | 131 | 43 |
38 | 191 | 148 | 58 |
G:=sub<GL(4,GF(241))| [0,0,0,240,1,0,0,240,0,1,0,240,0,0,1,240],[183,153,151,38,221,110,93,191,133,20,131,148,90,203,43,58] >;
C5⋊C16 in GAP, Magma, Sage, TeX
C_5\rtimes C_{16}
% in TeX
G:=Group("C5:C16");
// GroupNames label
G:=SmallGroup(80,3);
// by ID
G=gap.SmallGroup(80,3);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-5,10,26,42,804,809]);
// Polycyclic
G:=Group<a,b|a^5=b^16=1,b*a*b^-1=a^3>;
// generators/relations
Export
Subgroup lattice of C5⋊C16 in TeX
Character table of C5⋊C16 in TeX