Copied to
clipboard

G = C5⋊C16order 80 = 24·5

The semidirect product of C5 and C16 acting via C16/C4=C4

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C5⋊C16, C10.C8, C4.2F5, C20.2C4, C2.(C5⋊C8), C52C8.2C2, SmallGroup(80,3)

Series: Derived Chief Lower central Upper central

C1C5 — C5⋊C16
C1C5C10C20C52C8 — C5⋊C16
C5 — C5⋊C16
C1C4

Generators and relations for C5⋊C16
 G = < a,b | a5=b16=1, bab-1=a3 >

5C8
5C16

Character table of C5⋊C16

 class 124A4B58A8B8C8D1016A16B16C16D16E16F16G16H20A20B
 size 11114555545555555544
ρ111111111111111111111    trivial
ρ21111111111-1-1-1-1-1-1-1-111    linear of order 2
ρ311111-1-1-1-11-iiii-i-i-ii11    linear of order 4
ρ411111-1-1-1-11i-i-i-iiii-i11    linear of order 4
ρ511-1-11i-i-ii1ζ85ζ83ζ87ζ87ζ8ζ8ζ85ζ83-1-1    linear of order 8
ρ611-1-11i-i-ii1ζ8ζ87ζ83ζ83ζ85ζ85ζ8ζ87-1-1    linear of order 8
ρ711-1-11-iii-i1ζ87ζ8ζ85ζ85ζ83ζ83ζ87ζ8-1-1    linear of order 8
ρ811-1-11-iii-i1ζ83ζ85ζ8ζ8ζ87ζ87ζ83ζ85-1-1    linear of order 8
ρ91-1i-i1ζ1614ζ162ζ1610ζ166-1ζ1611ζ1613ζ169ζ16ζ1615ζ167ζ163ζ165-ii    linear of order 16
ρ101-1i-i1ζ1614ζ162ζ1610ζ166-1ζ163ζ165ζ16ζ169ζ167ζ1615ζ1611ζ1613-ii    linear of order 16
ρ111-1-ii1ζ1610ζ166ζ1614ζ162-1ζ169ζ1615ζ163ζ1611ζ165ζ1613ζ16ζ167i-i    linear of order 16
ρ121-1-ii1ζ1610ζ166ζ1614ζ162-1ζ16ζ167ζ1611ζ163ζ1613ζ165ζ169ζ1615i-i    linear of order 16
ρ131-1i-i1ζ166ζ1610ζ162ζ1614-1ζ1615ζ169ζ165ζ1613ζ163ζ1611ζ167ζ16-ii    linear of order 16
ρ141-1i-i1ζ166ζ1610ζ162ζ1614-1ζ167ζ16ζ1613ζ165ζ1611ζ163ζ1615ζ169-ii    linear of order 16
ρ151-1-ii1ζ162ζ1614ζ166ζ1610-1ζ1613ζ1611ζ1615ζ167ζ169ζ16ζ165ζ163i-i    linear of order 16
ρ161-1-ii1ζ162ζ1614ζ166ζ1610-1ζ165ζ163ζ167ζ1615ζ16ζ169ζ1613ζ1611i-i    linear of order 16
ρ174444-10000-100000000-1-1    orthogonal lifted from F5
ρ1844-4-4-10000-10000000011    symplectic lifted from C5⋊C8, Schur index 2
ρ194-44i-4i-10000100000000i-i    complex faithful, Schur index 4
ρ204-4-4i4i-10000100000000-ii    complex faithful, Schur index 4

Smallest permutation representation of C5⋊C16
Regular action on 80 points
Generators in S80
(1 72 25 45 59)(2 46 73 60 26)(3 61 47 27 74)(4 28 62 75 48)(5 76 29 33 63)(6 34 77 64 30)(7 49 35 31 78)(8 32 50 79 36)(9 80 17 37 51)(10 38 65 52 18)(11 53 39 19 66)(12 20 54 67 40)(13 68 21 41 55)(14 42 69 56 22)(15 57 43 23 70)(16 24 58 71 44)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)

G:=sub<Sym(80)| (1,72,25,45,59)(2,46,73,60,26)(3,61,47,27,74)(4,28,62,75,48)(5,76,29,33,63)(6,34,77,64,30)(7,49,35,31,78)(8,32,50,79,36)(9,80,17,37,51)(10,38,65,52,18)(11,53,39,19,66)(12,20,54,67,40)(13,68,21,41,55)(14,42,69,56,22)(15,57,43,23,70)(16,24,58,71,44), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)>;

G:=Group( (1,72,25,45,59)(2,46,73,60,26)(3,61,47,27,74)(4,28,62,75,48)(5,76,29,33,63)(6,34,77,64,30)(7,49,35,31,78)(8,32,50,79,36)(9,80,17,37,51)(10,38,65,52,18)(11,53,39,19,66)(12,20,54,67,40)(13,68,21,41,55)(14,42,69,56,22)(15,57,43,23,70)(16,24,58,71,44), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80) );

G=PermutationGroup([[(1,72,25,45,59),(2,46,73,60,26),(3,61,47,27,74),(4,28,62,75,48),(5,76,29,33,63),(6,34,77,64,30),(7,49,35,31,78),(8,32,50,79,36),(9,80,17,37,51),(10,38,65,52,18),(11,53,39,19,66),(12,20,54,67,40),(13,68,21,41,55),(14,42,69,56,22),(15,57,43,23,70),(16,24,58,71,44)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)]])

C5⋊C16 is a maximal subgroup of
D5⋊C16  C8.F5  C20.C8  C15⋊C16  C25⋊C16  C523C16  C524C16  C525C16
C5⋊C16 is a maximal quotient of
C5⋊C32  C15⋊C16  C25⋊C16  C523C16  C524C16  C525C16

Matrix representation of C5⋊C16 in GL4(𝔽241) generated by

0100
0010
0001
240240240240
,
18322113390
15311020203
1519313143
3819114858
G:=sub<GL(4,GF(241))| [0,0,0,240,1,0,0,240,0,1,0,240,0,0,1,240],[183,153,151,38,221,110,93,191,133,20,131,148,90,203,43,58] >;

C5⋊C16 in GAP, Magma, Sage, TeX

C_5\rtimes C_{16}
% in TeX

G:=Group("C5:C16");
// GroupNames label

G:=SmallGroup(80,3);
// by ID

G=gap.SmallGroup(80,3);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-5,10,26,42,804,809]);
// Polycyclic

G:=Group<a,b|a^5=b^16=1,b*a*b^-1=a^3>;
// generators/relations

Export

Subgroup lattice of C5⋊C16 in TeX
Character table of C5⋊C16 in TeX

׿
×
𝔽