Copied to
clipboard

G = D5⋊C8order 80 = 24·5

The semidirect product of D5 and C8 acting via C8/C4=C2

metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D5⋊C8, C4.3F5, C20.3C4, D10.2C4, Dic5.4C22, C4(C5⋊C8), C5⋊C83C2, C51(C2×C8), C2.1(C2×F5), C10.1(C2×C4), (C4×D5).5C2, SmallGroup(80,28)

Series: Derived Chief Lower central Upper central

C1C5 — D5⋊C8
C1C5C10Dic5C5⋊C8 — D5⋊C8
C5 — D5⋊C8
C1C4

Generators and relations for D5⋊C8
 G = < a,b,c | a5=b2=c8=1, bab=a-1, cac-1=a3, cbc-1=a2b >

5C2
5C2
5C4
5C22
5C8
5C2×C4
5C8
5C2×C8

Character table of D5⋊C8

 class 12A2B2C4A4B4C4D58A8B8C8D8E8F8G8H1020A20B
 size 11551155455555555444
ρ111111111111111111111    trivial
ρ211-1-1-1-1111-1111-1-1-111-1-1    linear of order 2
ρ3111111111-1-1-1-1-1-1-1-1111    linear of order 2
ρ411-1-1-1-11111-1-1-1111-11-1-1    linear of order 2
ρ51111-1-1-1-11ii-i-i-i-iii1-1-1    linear of order 4
ρ61111-1-1-1-11-i-iiiii-i-i1-1-1    linear of order 4
ρ711-1-111-1-11-ii-i-iii-ii111    linear of order 4
ρ811-1-111-1-11i-iii-i-ii-i111    linear of order 4
ρ91-1-11i-ii-i1ζ8ζ85ζ83ζ87ζ83ζ87ζ85ζ8-1-ii    linear of order 8
ρ101-11-1-iii-i1ζ8ζ8ζ87ζ83ζ83ζ87ζ85ζ85-1i-i    linear of order 8
ρ111-11-1-iii-i1ζ85ζ85ζ83ζ87ζ87ζ83ζ8ζ8-1i-i    linear of order 8
ρ121-1-11i-ii-i1ζ85ζ8ζ87ζ83ζ87ζ83ζ8ζ85-1-ii    linear of order 8
ρ131-11-1i-i-ii1ζ87ζ87ζ8ζ85ζ85ζ8ζ83ζ83-1-ii    linear of order 8
ρ141-11-1i-i-ii1ζ83ζ83ζ85ζ8ζ8ζ85ζ87ζ87-1-ii    linear of order 8
ρ151-1-11-ii-ii1ζ83ζ87ζ8ζ85ζ8ζ85ζ87ζ83-1i-i    linear of order 8
ρ161-1-11-ii-ii1ζ87ζ83ζ85ζ8ζ85ζ8ζ83ζ87-1i-i    linear of order 8
ρ1744004400-100000000-1-1-1    orthogonal lifted from F5
ρ184400-4-400-100000000-111    orthogonal lifted from C2×F5
ρ194-400-4i4i00-1000000001-ii    complex faithful, Schur index 2
ρ204-4004i-4i00-1000000001i-i    complex faithful, Schur index 2

Smallest permutation representation of D5⋊C8
On 40 points
Generators in S40
(1 35 27 20 11)(2 21 36 12 28)(3 13 22 29 37)(4 30 14 38 23)(5 39 31 24 15)(6 17 40 16 32)(7 9 18 25 33)(8 26 10 34 19)
(1 11)(2 28)(3 37)(4 23)(5 15)(6 32)(7 33)(8 19)(9 25)(12 21)(13 29)(16 17)(20 35)(24 39)(26 34)(30 38)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)

G:=sub<Sym(40)| (1,35,27,20,11)(2,21,36,12,28)(3,13,22,29,37)(4,30,14,38,23)(5,39,31,24,15)(6,17,40,16,32)(7,9,18,25,33)(8,26,10,34,19), (1,11)(2,28)(3,37)(4,23)(5,15)(6,32)(7,33)(8,19)(9,25)(12,21)(13,29)(16,17)(20,35)(24,39)(26,34)(30,38), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)>;

G:=Group( (1,35,27,20,11)(2,21,36,12,28)(3,13,22,29,37)(4,30,14,38,23)(5,39,31,24,15)(6,17,40,16,32)(7,9,18,25,33)(8,26,10,34,19), (1,11)(2,28)(3,37)(4,23)(5,15)(6,32)(7,33)(8,19)(9,25)(12,21)(13,29)(16,17)(20,35)(24,39)(26,34)(30,38), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40) );

G=PermutationGroup([[(1,35,27,20,11),(2,21,36,12,28),(3,13,22,29,37),(4,30,14,38,23),(5,39,31,24,15),(6,17,40,16,32),(7,9,18,25,33),(8,26,10,34,19)], [(1,11),(2,28),(3,37),(4,23),(5,15),(6,32),(7,33),(8,19),(9,25),(12,21),(13,29),(16,17),(20,35),(24,39),(26,34),(30,38)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40)]])

D5⋊C8 is a maximal subgroup of
C8×F5  C8⋊F5  D20⋊C4  Q8⋊F5  D5⋊M4(2)  D4.F5  Q8.F5  D15⋊C8  C60.C4  D25⋊C8  Dic5.4F5  D10.2F5  C20.14F5  C20.F5  C20.11F5  A5⋊C8  C4.6S5
D5⋊C8 is a maximal quotient of
D5⋊C16  C8.F5  C4×C5⋊C8  D10⋊C8  Dic5⋊C8  D15⋊C8  C60.C4  D25⋊C8  Dic5.4F5  D10.2F5  C20.14F5  C20.F5  C20.11F5

Matrix representation of D5⋊C8 in GL4(𝔽41) generated by

0100
0010
0001
40404040
,
0100
1000
40404040
0001
,
3201515
1515032
2617260
924249
G:=sub<GL(4,GF(41))| [0,0,0,40,1,0,0,40,0,1,0,40,0,0,1,40],[0,1,40,0,1,0,40,0,0,0,40,0,0,0,40,1],[32,15,26,9,0,15,17,24,15,0,26,24,15,32,0,9] >;

D5⋊C8 in GAP, Magma, Sage, TeX

D_5\rtimes C_8
% in TeX

G:=Group("D5:C8");
// GroupNames label

G:=SmallGroup(80,28);
// by ID

G=gap.SmallGroup(80,28);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-5,20,46,42,804,414]);
// Polycyclic

G:=Group<a,b,c|a^5=b^2=c^8=1,b*a*b=a^-1,c*a*c^-1=a^3,c*b*c^-1=a^2*b>;
// generators/relations

Export

Subgroup lattice of D5⋊C8 in TeX
Character table of D5⋊C8 in TeX

׿
×
𝔽