Copied to
clipboard

G = Dic21order 84 = 22·3·7

Dicyclic group

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: Dic21, C6.D7, C3⋊Dic7, C7⋊Dic3, C211C4, C14.S3, C2.D21, C42.1C2, SmallGroup(84,5)

Series: Derived Chief Lower central Upper central

C1C21 — Dic21
C1C7C21C42 — Dic21
C21 — Dic21
C1C2

Generators and relations for Dic21
 G = < a,b | a42=1, b2=a21, bab-1=a-1 >

21C4
7Dic3
3Dic7

Character table of Dic21

 class 1234A4B67A7B7C14A14B14C21A21B21C21D21E21F42A42B42C42D42E42F
 size 11221212222222222222222222
ρ1111111111111111111111111    trivial
ρ2111-1-11111111111111111111    linear of order 2
ρ31-11-ii-1111-1-1-1111111-1-1-1-1-1-1    linear of order 4
ρ41-11i-i-1111-1-1-1111111-1-1-1-1-1-1    linear of order 4
ρ522-100-1222222-1-1-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ622-100-1ζ7572ζ767ζ7473ζ7473ζ7572ζ76732ζ7432ζ7374ζ32ζ7432ζ7373ζ3ζ763ζ773ζ753ζ72753ζ763ζ77632ζ7532ζ727532ζ7432ζ7374ζ32ζ7432ζ73733ζ753ζ72753ζ763ζ776ζ3ζ763ζ7732ζ7532ζ7275    orthogonal lifted from D21
ρ7222002ζ767ζ7473ζ7572ζ7572ζ767ζ7473ζ7572ζ7572ζ7473ζ767ζ7473ζ767ζ7572ζ7572ζ767ζ7473ζ7473ζ767    orthogonal lifted from D7
ρ8222002ζ7572ζ767ζ7473ζ7473ζ7572ζ767ζ7473ζ7473ζ767ζ7572ζ767ζ7572ζ7473ζ7473ζ7572ζ767ζ767ζ7572    orthogonal lifted from D7
ρ9222002ζ7473ζ7572ζ767ζ767ζ7473ζ7572ζ767ζ767ζ7572ζ7473ζ7572ζ7473ζ767ζ767ζ7473ζ7572ζ7572ζ7473    orthogonal lifted from D7
ρ1022-100-1ζ7473ζ7572ζ767ζ767ζ7473ζ75723ζ763ζ776ζ3ζ763ζ7732ζ7532ζ727532ζ7432ζ73743ζ753ζ7275ζ32ζ7432ζ73733ζ763ζ776ζ3ζ763ζ7732ζ7432ζ73743ζ753ζ727532ζ7532ζ7275ζ32ζ7432ζ7373    orthogonal lifted from D21
ρ1122-100-1ζ7473ζ7572ζ767ζ767ζ7473ζ7572ζ3ζ763ζ773ζ763ζ7763ζ753ζ7275ζ32ζ7432ζ737332ζ7532ζ727532ζ7432ζ7374ζ3ζ763ζ773ζ763ζ776ζ32ζ7432ζ737332ζ7532ζ72753ζ753ζ727532ζ7432ζ7374    orthogonal lifted from D21
ρ1222-100-1ζ767ζ7473ζ7572ζ7572ζ767ζ74733ζ753ζ727532ζ7532ζ7275ζ32ζ7432ζ73733ζ763ζ77632ζ7432ζ7374ζ3ζ763ζ773ζ753ζ727532ζ7532ζ72753ζ763ζ77632ζ7432ζ7374ζ32ζ7432ζ7373ζ3ζ763ζ77    orthogonal lifted from D21
ρ1322-100-1ζ7572ζ767ζ7473ζ7473ζ7572ζ767ζ32ζ7432ζ737332ζ7432ζ73743ζ763ζ77632ζ7532ζ7275ζ3ζ763ζ773ζ753ζ7275ζ32ζ7432ζ737332ζ7432ζ737432ζ7532ζ7275ζ3ζ763ζ773ζ763ζ7763ζ753ζ7275    orthogonal lifted from D21
ρ1422-100-1ζ767ζ7473ζ7572ζ7572ζ767ζ747332ζ7532ζ72753ζ753ζ727532ζ7432ζ7374ζ3ζ763ζ77ζ32ζ7432ζ73733ζ763ζ77632ζ7532ζ72753ζ753ζ7275ζ3ζ763ζ77ζ32ζ7432ζ737332ζ7432ζ73743ζ763ζ776    orthogonal lifted from D21
ρ152-2-1001222-2-2-2-1-1-1-1-1-1111111    symplectic lifted from Dic3, Schur index 2
ρ162-2200-2ζ767ζ7473ζ757275727677473ζ7572ζ7572ζ7473ζ767ζ7473ζ7677572757276774737473767    symplectic lifted from Dic7, Schur index 2
ρ172-2200-2ζ7473ζ7572ζ76776774737572ζ767ζ767ζ7572ζ7473ζ7572ζ74737677677473757275727473    symplectic lifted from Dic7, Schur index 2
ρ182-2-1001ζ767ζ7473ζ7572757276774733ζ753ζ727532ζ7532ζ7275ζ32ζ7432ζ73733ζ763ζ77632ζ7432ζ7374ζ3ζ763ζ77ζ3ζ753ζ72753ζ753ζ727232ζ7632ζ77ζ32ζ7432ζ7374ζ3ζ743ζ7374ζ32ζ7632ζ776    symplectic faithful, Schur index 2
ρ192-2-1001ζ7572ζ767ζ747374737572767ζ32ζ7432ζ737332ζ7432ζ73743ζ763ζ77632ζ7532ζ7275ζ3ζ763ζ773ζ753ζ7275ζ3ζ743ζ7374ζ32ζ7432ζ73743ζ753ζ7272ζ32ζ7632ζ77632ζ7632ζ77ζ3ζ753ζ7275    symplectic faithful, Schur index 2
ρ202-2-1001ζ7473ζ7572ζ76776774737572ζ3ζ763ζ773ζ763ζ7763ζ753ζ7275ζ32ζ7432ζ737332ζ7532ζ727532ζ7432ζ7374ζ32ζ7632ζ77632ζ7632ζ77ζ3ζ743ζ73743ζ753ζ7272ζ3ζ753ζ7275ζ32ζ7432ζ7374    symplectic faithful, Schur index 2
ρ212-2-1001ζ7572ζ767ζ74737473757276732ζ7432ζ7374ζ32ζ7432ζ7373ζ3ζ763ζ773ζ753ζ72753ζ763ζ77632ζ7532ζ7275ζ32ζ7432ζ7374ζ3ζ743ζ7374ζ3ζ753ζ727532ζ7632ζ77ζ32ζ7632ζ7763ζ753ζ7272    symplectic faithful, Schur index 2
ρ222-2-1001ζ7473ζ7572ζ767767747375723ζ763ζ776ζ3ζ763ζ7732ζ7532ζ727532ζ7432ζ73743ζ753ζ7275ζ32ζ7432ζ737332ζ7632ζ77ζ32ζ7632ζ776ζ32ζ7432ζ7374ζ3ζ753ζ72753ζ753ζ7272ζ3ζ743ζ7374    symplectic faithful, Schur index 2
ρ232-2200-2ζ7572ζ767ζ747374737572767ζ7473ζ7473ζ767ζ7572ζ767ζ75727473747375727677677572    symplectic lifted from Dic7, Schur index 2
ρ242-2-1001ζ767ζ7473ζ75727572767747332ζ7532ζ72753ζ753ζ727532ζ7432ζ7374ζ3ζ763ζ77ζ32ζ7432ζ73733ζ763ζ7763ζ753ζ7272ζ3ζ753ζ7275ζ32ζ7632ζ776ζ3ζ743ζ7374ζ32ζ7432ζ737432ζ7632ζ77    symplectic faithful, Schur index 2

Smallest permutation representation of Dic21
Regular action on 84 points
Generators in S84
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)
(1 44 22 65)(2 43 23 64)(3 84 24 63)(4 83 25 62)(5 82 26 61)(6 81 27 60)(7 80 28 59)(8 79 29 58)(9 78 30 57)(10 77 31 56)(11 76 32 55)(12 75 33 54)(13 74 34 53)(14 73 35 52)(15 72 36 51)(16 71 37 50)(17 70 38 49)(18 69 39 48)(19 68 40 47)(20 67 41 46)(21 66 42 45)

G:=sub<Sym(84)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84), (1,44,22,65)(2,43,23,64)(3,84,24,63)(4,83,25,62)(5,82,26,61)(6,81,27,60)(7,80,28,59)(8,79,29,58)(9,78,30,57)(10,77,31,56)(11,76,32,55)(12,75,33,54)(13,74,34,53)(14,73,35,52)(15,72,36,51)(16,71,37,50)(17,70,38,49)(18,69,39,48)(19,68,40,47)(20,67,41,46)(21,66,42,45)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84), (1,44,22,65)(2,43,23,64)(3,84,24,63)(4,83,25,62)(5,82,26,61)(6,81,27,60)(7,80,28,59)(8,79,29,58)(9,78,30,57)(10,77,31,56)(11,76,32,55)(12,75,33,54)(13,74,34,53)(14,73,35,52)(15,72,36,51)(16,71,37,50)(17,70,38,49)(18,69,39,48)(19,68,40,47)(20,67,41,46)(21,66,42,45) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)], [(1,44,22,65),(2,43,23,64),(3,84,24,63),(4,83,25,62),(5,82,26,61),(6,81,27,60),(7,80,28,59),(8,79,29,58),(9,78,30,57),(10,77,31,56),(11,76,32,55),(12,75,33,54),(13,74,34,53),(14,73,35,52),(15,72,36,51),(16,71,37,50),(17,70,38,49),(18,69,39,48),(19,68,40,47),(20,67,41,46),(21,66,42,45)]])

Dic21 is a maximal subgroup of
Dic3×D7  S3×Dic7  C21⋊D4  C21⋊Q8  Dic42  C4×D21  C217D4  Dic63  C6.F7  C3⋊Dic21  Q8.D21  A4⋊Dic7  Dic105  C5⋊Dic21
Dic21 is a maximal quotient of
C21⋊C8  Dic63  C3⋊Dic21  A4⋊Dic7  Dic105  C5⋊Dic21

Matrix representation of Dic21 in GL2(𝔽41) generated by

262
227
,
925
032
G:=sub<GL(2,GF(41))| [26,2,2,27],[9,0,25,32] >;

Dic21 in GAP, Magma, Sage, TeX

{\rm Dic}_{21}
% in TeX

G:=Group("Dic21");
// GroupNames label

G:=SmallGroup(84,5);
// by ID

G=gap.SmallGroup(84,5);
# by ID

G:=PCGroup([4,-2,-2,-3,-7,8,98,1155]);
// Polycyclic

G:=Group<a,b|a^42=1,b^2=a^21,b*a*b^-1=a^-1>;
// generators/relations

Export

Subgroup lattice of Dic21 in TeX
Character table of Dic21 in TeX

׿
×
𝔽