Copied to
clipboard

G = Q8⋊C4order 32 = 25

1st semidirect product of Q8 and C4 acting via C4/C2=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: Q81C4, C4.12D4, C2.1Q16, C2.2SD16, C22.9D4, C4⋊C4.1C2, C4.2(C2×C4), (C2×C8).1C2, (C2×Q8).2C2, C2.7(C22⋊C4), (C2×C4).15C22, SmallGroup(32,10)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — Q8⋊C4
C1C2C22C2×C4C2×Q8 — Q8⋊C4
C1C2C4 — Q8⋊C4
C1C22C2×C4 — Q8⋊C4
C1C2C2C2×C4 — Q8⋊C4

Generators and relations for Q8⋊C4
 G = < a,b,c | a4=c4=1, b2=a2, bab-1=cac-1=a-1, cbc-1=a-1b >

2C4
2C4
4C4
2C8
2Q8
2C2×C4
2C2×C4

Character table of Q8⋊C4

 class 12A2B2C4A4B4C4D4E4F8A8B8C8D
 size 11112244442222
ρ111111111111111    trivial
ρ2111111-11-11-1-1-1-1    linear of order 2
ρ3111111-1-1-1-11111    linear of order 2
ρ41111111-11-1-1-1-1-1    linear of order 2
ρ51-1-111-11-i-1i-i-iii    linear of order 4
ρ61-1-111-1-1-i1iii-i-i    linear of order 4
ρ71-1-111-1-1i1-i-i-iii    linear of order 4
ρ81-1-111-11i-1-iii-i-i    linear of order 4
ρ92222-2-200000000    orthogonal lifted from D4
ρ102-2-22-2200000000    orthogonal lifted from D4
ρ1122-2-2000000-222-2    symplectic lifted from Q16, Schur index 2
ρ1222-2-20000002-2-22    symplectic lifted from Q16, Schur index 2
ρ132-22-2000000-2--2-2--2    complex lifted from SD16
ρ142-22-2000000--2-2--2-2    complex lifted from SD16

Smallest permutation representation of Q8⋊C4
Regular action on 32 points
Generators in S32
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 18 3 20)(2 17 4 19)(5 23 7 21)(6 22 8 24)(9 15 11 13)(10 14 12 16)(25 29 27 31)(26 32 28 30)
(1 25 10 24)(2 28 11 23)(3 27 12 22)(4 26 9 21)(5 20 32 16)(6 19 29 15)(7 18 30 14)(8 17 31 13)

G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,18,3,20)(2,17,4,19)(5,23,7,21)(6,22,8,24)(9,15,11,13)(10,14,12,16)(25,29,27,31)(26,32,28,30), (1,25,10,24)(2,28,11,23)(3,27,12,22)(4,26,9,21)(5,20,32,16)(6,19,29,15)(7,18,30,14)(8,17,31,13)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,18,3,20)(2,17,4,19)(5,23,7,21)(6,22,8,24)(9,15,11,13)(10,14,12,16)(25,29,27,31)(26,32,28,30), (1,25,10,24)(2,28,11,23)(3,27,12,22)(4,26,9,21)(5,20,32,16)(6,19,29,15)(7,18,30,14)(8,17,31,13) );

G=PermutationGroup([(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,18,3,20),(2,17,4,19),(5,23,7,21),(6,22,8,24),(9,15,11,13),(10,14,12,16),(25,29,27,31),(26,32,28,30)], [(1,25,10,24),(2,28,11,23),(3,27,12,22),(4,26,9,21),(5,20,32,16),(6,19,29,15),(7,18,30,14),(8,17,31,13)])

Matrix representation of Q8⋊C4 in GL3(𝔽17) generated by

100
001
0160
,
100
017
0716
,
400
0114
046
G:=sub<GL(3,GF(17))| [1,0,0,0,0,16,0,1,0],[1,0,0,0,1,7,0,7,16],[4,0,0,0,11,4,0,4,6] >;

Q8⋊C4 in GAP, Magma, Sage, TeX

Q_8\rtimes C_4
% in TeX

G:=Group("Q8:C4");
// GroupNames label

G:=SmallGroup(32,10);
// by ID

G=gap.SmallGroup(32,10);
# by ID

G:=PCGroup([5,-2,2,-2,2,-2,40,61,86,302,157,72]);
// Polycyclic

G:=Group<a,b,c|a^4=c^4=1,b^2=a^2,b*a*b^-1=c*a*c^-1=a^-1,c*b*c^-1=a^-1*b>;
// generators/relations

׿
×
𝔽