p-group, metabelian, nilpotent (class 3), monomial
Aliases: Q8⋊1C4, C4.12D4, C2.1Q16, C2.2SD16, C22.9D4, C4⋊C4.1C2, C4.2(C2×C4), (C2×C8).1C2, (C2×Q8).2C2, C2.7(C22⋊C4), (C2×C4).15C22, SmallGroup(32,10)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for Q8⋊C4
G = < a,b,c | a4=c4=1, b2=a2, bab-1=cac-1=a-1, cbc-1=a-1b >
Character table of Q8⋊C4
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -i | -1 | i | -i | -i | i | i | linear of order 4 |
ρ6 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -i | 1 | i | i | i | -i | -i | linear of order 4 |
ρ7 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | i | 1 | -i | -i | -i | i | i | linear of order 4 |
ρ8 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | i | -1 | -i | i | i | -i | -i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ12 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ13 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | complex lifted from SD16 |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 18 3 20)(2 17 4 19)(5 23 7 21)(6 22 8 24)(9 15 11 13)(10 14 12 16)(25 29 27 31)(26 32 28 30)
(1 25 10 24)(2 28 11 23)(3 27 12 22)(4 26 9 21)(5 20 32 16)(6 19 29 15)(7 18 30 14)(8 17 31 13)
G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,18,3,20)(2,17,4,19)(5,23,7,21)(6,22,8,24)(9,15,11,13)(10,14,12,16)(25,29,27,31)(26,32,28,30), (1,25,10,24)(2,28,11,23)(3,27,12,22)(4,26,9,21)(5,20,32,16)(6,19,29,15)(7,18,30,14)(8,17,31,13)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,18,3,20)(2,17,4,19)(5,23,7,21)(6,22,8,24)(9,15,11,13)(10,14,12,16)(25,29,27,31)(26,32,28,30), (1,25,10,24)(2,28,11,23)(3,27,12,22)(4,26,9,21)(5,20,32,16)(6,19,29,15)(7,18,30,14)(8,17,31,13) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,18,3,20),(2,17,4,19),(5,23,7,21),(6,22,8,24),(9,15,11,13),(10,14,12,16),(25,29,27,31),(26,32,28,30)], [(1,25,10,24),(2,28,11,23),(3,27,12,22),(4,26,9,21),(5,20,32,16),(6,19,29,15),(7,18,30,14),(8,17,31,13)]])
Q8⋊C4 is a maximal subgroup of
C23.24D4 C23.36D4 C23.38D4 C4×SD16 C4×Q16 SD16⋊C4 Q16⋊C4 Q8⋊D4 D4⋊D4 C22⋊Q16 D4.7D4 D4.D4 C4⋊2Q16 D4.2D4 Q8.D4 C8⋊8D4 C8⋊D4 Q8⋊Q8 C4.Q16 Q8.Q8 C23.47D4 C23.48D4 C23.20D4 C4.SD16 C42.78C22 C42.28C22 C42.30C22 Q8⋊Dic3 Q8⋊F5 C3⋊S3.2Q16 C62.4D4 C3⋊S3.5Q16 PSU3(𝔽2)⋊C4 D13.Q16
C4p.D4: C8.18D4 C8.D4 C6.SD16 C2.Dic12 Q8⋊2Dic3 C10.Q16 C20.44D4 Q8⋊Dic5 ...
Q8⋊C4 is a maximal quotient of
C23.31D4 C22.4Q16 Q8⋊F5 C3⋊S3.2Q16 C62.4D4 C3⋊S3.5Q16 PSU3(𝔽2)⋊C4 D13.Q16
C2p.Q16: Q8⋊C8 C4.10D8 C4.6Q16 C6.SD16 C2.Dic12 Q8⋊2Dic3 C10.Q16 C20.44D4 ...
Matrix representation of Q8⋊C4 ►in GL3(𝔽17) generated by
1 | 0 | 0 |
0 | 0 | 1 |
0 | 16 | 0 |
1 | 0 | 0 |
0 | 1 | 7 |
0 | 7 | 16 |
4 | 0 | 0 |
0 | 11 | 4 |
0 | 4 | 6 |
G:=sub<GL(3,GF(17))| [1,0,0,0,0,16,0,1,0],[1,0,0,0,1,7,0,7,16],[4,0,0,0,11,4,0,4,6] >;
Q8⋊C4 in GAP, Magma, Sage, TeX
Q_8\rtimes C_4
% in TeX
G:=Group("Q8:C4");
// GroupNames label
G:=SmallGroup(32,10);
// by ID
G=gap.SmallGroup(32,10);
# by ID
G:=PCGroup([5,-2,2,-2,2,-2,40,61,86,302,157,72]);
// Polycyclic
G:=Group<a,b,c|a^4=c^4=1,b^2=a^2,b*a*b^-1=c*a*c^-1=a^-1,c*b*c^-1=a^-1*b>;
// generators/relations
Export
Subgroup lattice of Q8⋊C4 in TeX
Character table of Q8⋊C4 in TeX