Extensions 1→N→G→Q→1 with N=C2×Dic3 and Q=C2

Direct product G=N×Q with N=C2×Dic3 and Q=C2
dρLabelID
C22×Dic348C2^2xDic348,42

Semidirect products G=N:Q with N=C2×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic3)⋊1C2 = D6⋊C4φ: C2/C1C2 ⊆ Out C2×Dic324(C2xDic3):1C248,14
(C2×Dic3)⋊2C2 = C6.D4φ: C2/C1C2 ⊆ Out C2×Dic324(C2xDic3):2C248,19
(C2×Dic3)⋊3C2 = D42S3φ: C2/C1C2 ⊆ Out C2×Dic3244-(C2xDic3):3C248,39
(C2×Dic3)⋊4C2 = C2×C3⋊D4φ: C2/C1C2 ⊆ Out C2×Dic324(C2xDic3):4C248,43
(C2×Dic3)⋊5C2 = S3×C2×C4φ: trivial image24(C2xDic3):5C248,35

Non-split extensions G=N.Q with N=C2×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic3).1C2 = Dic3⋊C4φ: C2/C1C2 ⊆ Out C2×Dic348(C2xDic3).1C248,12
(C2×Dic3).2C2 = C4⋊Dic3φ: C2/C1C2 ⊆ Out C2×Dic348(C2xDic3).2C248,13
(C2×Dic3).3C2 = C2×Dic6φ: C2/C1C2 ⊆ Out C2×Dic348(C2xDic3).3C248,34
(C2×Dic3).4C2 = C4×Dic3φ: trivial image48(C2xDic3).4C248,11

׿
×
𝔽