Copied to
clipboard

G = C4×C4⋊Q8order 128 = 27

Direct product of C4 and C4⋊Q8

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: C4×C4⋊Q8, C4217Q8, C43.14C2, C42.344D4, C23.189C24, C41(C4×Q8), C4.36(C4×D4), C43(C429C4), C42.279(C2×C4), C429C4.43C2, C22.80(C23×C4), C22.83(C22×D4), C22.29(C22×Q8), (C22×C4).752C23, (C2×C42).404C22, (C22×Q8).394C22, C47(C23.65C23), C45(C23.67C23), C2.7(C22.26C24), C23.65C23.95C2, C23.67C23.68C2, C2.C42.519C22, C2.6(C23.37C23), C2.19(C2×C4×D4), C2.4(C2×C4⋊Q8), C2.10(C2×C4×Q8), (C4×C4⋊C4).33C2, (C2×C4×Q8).20C2, (C2×C4⋊Q8).58C2, C4⋊C4.155(C2×C4), (C2×C4).826(C2×D4), (C2×C4).227(C2×Q8), (C2×C4).23(C22×C4), (C2×Q8).147(C2×C4), C22.81(C2×C4○D4), (C2×C4)3(C429C4), (C2×C4).642(C4○D4), (C2×C4⋊C4).803C22, (C2×C4)3(C23.67C23), SmallGroup(128,1039)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C4×C4⋊Q8
C1C2C22C23C22×C4C2×C42C43 — C4×C4⋊Q8
C1C22 — C4×C4⋊Q8
C1C22×C4 — C4×C4⋊Q8
C1C23 — C4×C4⋊Q8

Subgroups: 412 in 294 conjugacy classes, 184 normal (18 characteristic)
C1, C2 [×3], C2 [×4], C4 [×16], C4 [×18], C22 [×3], C22 [×4], C2×C4 [×38], C2×C4 [×26], Q8 [×16], C23, C42 [×16], C42 [×14], C4⋊C4 [×16], C4⋊C4 [×20], C22×C4 [×3], C22×C4 [×12], C2×Q8 [×8], C2×Q8 [×8], C2.C42 [×8], C2×C42 [×3], C2×C42 [×8], C2×C4⋊C4 [×14], C4×Q8 [×8], C4⋊Q8 [×8], C22×Q8 [×2], C43, C4×C4⋊C4 [×4], C429C4, C23.65C23 [×4], C23.67C23 [×2], C2×C4×Q8 [×2], C2×C4⋊Q8, C4×C4⋊Q8

Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], D4 [×4], Q8 [×8], C23 [×15], C22×C4 [×14], C2×D4 [×6], C2×Q8 [×12], C4○D4 [×6], C24, C4×D4 [×4], C4×Q8 [×8], C4⋊Q8 [×4], C23×C4, C22×D4, C22×Q8 [×2], C2×C4○D4 [×3], C2×C4×D4, C2×C4×Q8 [×2], C2×C4⋊Q8, C22.26C24, C23.37C23 [×2], C4×C4⋊Q8

Generators and relations
 G = < a,b,c,d | a4=b4=c4=1, d2=c2, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c-1 >

Smallest permutation representation
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 70 19 73)(2 71 20 74)(3 72 17 75)(4 69 18 76)(5 79 13 84)(6 80 14 81)(7 77 15 82)(8 78 16 83)(9 86 126 89)(10 87 127 90)(11 88 128 91)(12 85 125 92)(21 66 28 61)(22 67 25 62)(23 68 26 63)(24 65 27 64)(29 50 34 45)(30 51 35 46)(31 52 36 47)(32 49 33 48)(37 60 44 53)(38 57 41 54)(39 58 42 55)(40 59 43 56)(93 109 98 114)(94 110 99 115)(95 111 100 116)(96 112 97 113)(101 117 108 124)(102 118 105 121)(103 119 106 122)(104 120 107 123)
(1 49 22 56)(2 50 23 53)(3 51 24 54)(4 52 21 55)(5 108 127 93)(6 105 128 94)(7 106 125 95)(8 107 126 96)(9 97 16 104)(10 98 13 101)(11 99 14 102)(12 100 15 103)(17 46 27 57)(18 47 28 58)(19 48 25 59)(20 45 26 60)(29 63 44 74)(30 64 41 75)(31 61 42 76)(32 62 43 73)(33 67 40 70)(34 68 37 71)(35 65 38 72)(36 66 39 69)(77 122 92 111)(78 123 89 112)(79 124 90 109)(80 121 91 110)(81 118 88 115)(82 119 85 116)(83 120 86 113)(84 117 87 114)
(1 77 22 92)(2 78 23 89)(3 79 24 90)(4 80 21 91)(5 65 127 72)(6 66 128 69)(7 67 125 70)(8 68 126 71)(9 74 16 63)(10 75 13 64)(11 76 14 61)(12 73 15 62)(17 84 27 87)(18 81 28 88)(19 82 25 85)(20 83 26 86)(29 97 44 104)(30 98 41 101)(31 99 42 102)(32 100 43 103)(33 95 40 106)(34 96 37 107)(35 93 38 108)(36 94 39 105)(45 113 60 120)(46 114 57 117)(47 115 58 118)(48 116 59 119)(49 111 56 122)(50 112 53 123)(51 109 54 124)(52 110 55 121)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,70,19,73)(2,71,20,74)(3,72,17,75)(4,69,18,76)(5,79,13,84)(6,80,14,81)(7,77,15,82)(8,78,16,83)(9,86,126,89)(10,87,127,90)(11,88,128,91)(12,85,125,92)(21,66,28,61)(22,67,25,62)(23,68,26,63)(24,65,27,64)(29,50,34,45)(30,51,35,46)(31,52,36,47)(32,49,33,48)(37,60,44,53)(38,57,41,54)(39,58,42,55)(40,59,43,56)(93,109,98,114)(94,110,99,115)(95,111,100,116)(96,112,97,113)(101,117,108,124)(102,118,105,121)(103,119,106,122)(104,120,107,123), (1,49,22,56)(2,50,23,53)(3,51,24,54)(4,52,21,55)(5,108,127,93)(6,105,128,94)(7,106,125,95)(8,107,126,96)(9,97,16,104)(10,98,13,101)(11,99,14,102)(12,100,15,103)(17,46,27,57)(18,47,28,58)(19,48,25,59)(20,45,26,60)(29,63,44,74)(30,64,41,75)(31,61,42,76)(32,62,43,73)(33,67,40,70)(34,68,37,71)(35,65,38,72)(36,66,39,69)(77,122,92,111)(78,123,89,112)(79,124,90,109)(80,121,91,110)(81,118,88,115)(82,119,85,116)(83,120,86,113)(84,117,87,114), (1,77,22,92)(2,78,23,89)(3,79,24,90)(4,80,21,91)(5,65,127,72)(6,66,128,69)(7,67,125,70)(8,68,126,71)(9,74,16,63)(10,75,13,64)(11,76,14,61)(12,73,15,62)(17,84,27,87)(18,81,28,88)(19,82,25,85)(20,83,26,86)(29,97,44,104)(30,98,41,101)(31,99,42,102)(32,100,43,103)(33,95,40,106)(34,96,37,107)(35,93,38,108)(36,94,39,105)(45,113,60,120)(46,114,57,117)(47,115,58,118)(48,116,59,119)(49,111,56,122)(50,112,53,123)(51,109,54,124)(52,110,55,121)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,70,19,73)(2,71,20,74)(3,72,17,75)(4,69,18,76)(5,79,13,84)(6,80,14,81)(7,77,15,82)(8,78,16,83)(9,86,126,89)(10,87,127,90)(11,88,128,91)(12,85,125,92)(21,66,28,61)(22,67,25,62)(23,68,26,63)(24,65,27,64)(29,50,34,45)(30,51,35,46)(31,52,36,47)(32,49,33,48)(37,60,44,53)(38,57,41,54)(39,58,42,55)(40,59,43,56)(93,109,98,114)(94,110,99,115)(95,111,100,116)(96,112,97,113)(101,117,108,124)(102,118,105,121)(103,119,106,122)(104,120,107,123), (1,49,22,56)(2,50,23,53)(3,51,24,54)(4,52,21,55)(5,108,127,93)(6,105,128,94)(7,106,125,95)(8,107,126,96)(9,97,16,104)(10,98,13,101)(11,99,14,102)(12,100,15,103)(17,46,27,57)(18,47,28,58)(19,48,25,59)(20,45,26,60)(29,63,44,74)(30,64,41,75)(31,61,42,76)(32,62,43,73)(33,67,40,70)(34,68,37,71)(35,65,38,72)(36,66,39,69)(77,122,92,111)(78,123,89,112)(79,124,90,109)(80,121,91,110)(81,118,88,115)(82,119,85,116)(83,120,86,113)(84,117,87,114), (1,77,22,92)(2,78,23,89)(3,79,24,90)(4,80,21,91)(5,65,127,72)(6,66,128,69)(7,67,125,70)(8,68,126,71)(9,74,16,63)(10,75,13,64)(11,76,14,61)(12,73,15,62)(17,84,27,87)(18,81,28,88)(19,82,25,85)(20,83,26,86)(29,97,44,104)(30,98,41,101)(31,99,42,102)(32,100,43,103)(33,95,40,106)(34,96,37,107)(35,93,38,108)(36,94,39,105)(45,113,60,120)(46,114,57,117)(47,115,58,118)(48,116,59,119)(49,111,56,122)(50,112,53,123)(51,109,54,124)(52,110,55,121) );

G=PermutationGroup([(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,70,19,73),(2,71,20,74),(3,72,17,75),(4,69,18,76),(5,79,13,84),(6,80,14,81),(7,77,15,82),(8,78,16,83),(9,86,126,89),(10,87,127,90),(11,88,128,91),(12,85,125,92),(21,66,28,61),(22,67,25,62),(23,68,26,63),(24,65,27,64),(29,50,34,45),(30,51,35,46),(31,52,36,47),(32,49,33,48),(37,60,44,53),(38,57,41,54),(39,58,42,55),(40,59,43,56),(93,109,98,114),(94,110,99,115),(95,111,100,116),(96,112,97,113),(101,117,108,124),(102,118,105,121),(103,119,106,122),(104,120,107,123)], [(1,49,22,56),(2,50,23,53),(3,51,24,54),(4,52,21,55),(5,108,127,93),(6,105,128,94),(7,106,125,95),(8,107,126,96),(9,97,16,104),(10,98,13,101),(11,99,14,102),(12,100,15,103),(17,46,27,57),(18,47,28,58),(19,48,25,59),(20,45,26,60),(29,63,44,74),(30,64,41,75),(31,61,42,76),(32,62,43,73),(33,67,40,70),(34,68,37,71),(35,65,38,72),(36,66,39,69),(77,122,92,111),(78,123,89,112),(79,124,90,109),(80,121,91,110),(81,118,88,115),(82,119,85,116),(83,120,86,113),(84,117,87,114)], [(1,77,22,92),(2,78,23,89),(3,79,24,90),(4,80,21,91),(5,65,127,72),(6,66,128,69),(7,67,125,70),(8,68,126,71),(9,74,16,63),(10,75,13,64),(11,76,14,61),(12,73,15,62),(17,84,27,87),(18,81,28,88),(19,82,25,85),(20,83,26,86),(29,97,44,104),(30,98,41,101),(31,99,42,102),(32,100,43,103),(33,95,40,106),(34,96,37,107),(35,93,38,108),(36,94,39,105),(45,113,60,120),(46,114,57,117),(47,115,58,118),(48,116,59,119),(49,111,56,122),(50,112,53,123),(51,109,54,124),(52,110,55,121)])

Matrix representation G ⊆ GL5(𝔽5)

20000
04000
00400
00040
00004
,
40000
02000
01300
00040
00004
,
10000
03000
04200
00020
00003
,
10000
02200
00300
00001
00040

G:=sub<GL(5,GF(5))| [2,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4],[4,0,0,0,0,0,2,1,0,0,0,0,3,0,0,0,0,0,4,0,0,0,0,0,4],[1,0,0,0,0,0,3,4,0,0,0,0,2,0,0,0,0,0,2,0,0,0,0,0,3],[1,0,0,0,0,0,2,0,0,0,0,2,3,0,0,0,0,0,0,4,0,0,0,1,0] >;

56 conjugacy classes

class 1 2A···2G4A···4H4I···4AF4AG···4AV
order12···24···44···44···4
size11···11···12···24···4

56 irreducible representations

dim111111111222
type+++++++++-
imageC1C2C2C2C2C2C2C2C4D4Q8C4○D4
kernelC4×C4⋊Q8C43C4×C4⋊C4C429C4C23.65C23C23.67C23C2×C4×Q8C2×C4⋊Q8C4⋊Q8C42C42C2×C4
# reps11414221164812

In GAP, Magma, Sage, TeX

C_4\times C_4\rtimes Q_8
% in TeX

G:=Group("C4xC4:Q8");
// GroupNames label

G:=SmallGroup(128,1039);
// by ID

G=gap.SmallGroup(128,1039);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,120,758,184,304]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=c^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽