Extensions 1→N→G→Q→1 with N=C4xD8 and Q=C2

Direct product G=NxQ with N=C4xD8 and Q=C2
dρLabelID
C2xC4xD864C2xC4xD8128,1668

Semidirect products G=N:Q with N=C4xD8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4xD8):1C2 = C4xD16φ: C2/C1C2 ⊆ Out C4xD864(C4xD8):1C2128,904
(C4xD8):2C2 = D8:2D4φ: C2/C1C2 ⊆ Out C4xD864(C4xD8):2C2128,938
(C4xD8):3C2 = C42.221D4φ: C2/C1C2 ⊆ Out C4xD832(C4xD8):3C2128,1832
(C4xD8):4C2 = C42.384D4φ: C2/C1C2 ⊆ Out C4xD864(C4xD8):4C2128,1834
(C4xD8):5C2 = C42.356C23φ: C2/C1C2 ⊆ Out C4xD832(C4xD8):5C2128,1854
(C4xD8):6C2 = C42.358C23φ: C2/C1C2 ⊆ Out C4xD864(C4xD8):6C2128,1856
(C4xD8):7C2 = C42.308D4φ: C2/C1C2 ⊆ Out C4xD864(C4xD8):7C2128,1900
(C4xD8):8C2 = C42.366D4φ: C2/C1C2 ⊆ Out C4xD864(C4xD8):8C2128,1901
(C4xD8):9C2 = D4xD8φ: C2/C1C2 ⊆ Out C4xD832(C4xD8):9C2128,2011
(C4xD8):10C2 = D8:13D4φ: C2/C1C2 ⊆ Out C4xD864(C4xD8):10C2128,2015
(C4xD8):11C2 = D4:4D8φ: C2/C1C2 ⊆ Out C4xD832(C4xD8):11C2128,2026
(C4xD8):12C2 = C42.462C23φ: C2/C1C2 ⊆ Out C4xD832(C4xD8):12C2128,2029
(C4xD8):13C2 = C42.468C23φ: C2/C1C2 ⊆ Out C4xD864(C4xD8):13C2128,2035
(C4xD8):14C2 = D4:5D8φ: C2/C1C2 ⊆ Out C4xD864(C4xD8):14C2128,2066
(C4xD8):15C2 = C42.490C23φ: C2/C1C2 ⊆ Out C4xD864(C4xD8):15C2128,2073
(C4xD8):16C2 = Q8:4D8φ: C2/C1C2 ⊆ Out C4xD864(C4xD8):16C2128,2090
(C4xD8):17C2 = C42.502C23φ: C2/C1C2 ⊆ Out C4xD864(C4xD8):17C2128,2093
(C4xD8):18C2 = Q8:5D8φ: C2/C1C2 ⊆ Out C4xD864(C4xD8):18C2128,2123
(C4xD8):19C2 = D8.5D4φ: C2/C1C2 ⊆ Out C4xD864(C4xD8):19C2128,942
(C4xD8):20C2 = C42.225D4φ: C2/C1C2 ⊆ Out C4xD832(C4xD8):20C2128,1837
(C4xD8):21C2 = C42.450D4φ: C2/C1C2 ⊆ Out C4xD864(C4xD8):21C2128,1838
(C4xD8):22C2 = C42.352C23φ: C2/C1C2 ⊆ Out C4xD832(C4xD8):22C2128,1850
(C4xD8):23C2 = C42.353C23φ: C2/C1C2 ⊆ Out C4xD864(C4xD8):23C2128,1851
(C4xD8):24C2 = D8:12D4φ: C2/C1C2 ⊆ Out C4xD832(C4xD8):24C2128,2012
(C4xD8):25C2 = C42.488C23φ: C2/C1C2 ⊆ Out C4xD864(C4xD8):25C2128,2071
(C4xD8):26C2 = C42.530C23φ: C2/C1C2 ⊆ Out C4xD864(C4xD8):26C2128,2128
(C4xD8):27C2 = C4xC8:C22φ: C2/C1C2 ⊆ Out C4xD832(C4xD8):27C2128,1676
(C4xD8):28C2 = C42.275C23φ: C2/C1C2 ⊆ Out C4xD832(C4xD8):28C2128,1678
(C4xD8):29C2 = C42.255D4φ: C2/C1C2 ⊆ Out C4xD864(C4xD8):29C2128,1903
(C4xD8):30C2 = C42.391C23φ: C2/C1C2 ⊆ Out C4xD864(C4xD8):30C2128,1911
(C4xD8):31C2 = D8:4D4φ: C2/C1C2 ⊆ Out C4xD832(C4xD8):31C2128,2004
(C4xD8):32C2 = D8:5D4φ: C2/C1C2 ⊆ Out C4xD832(C4xD8):32C2128,2005
(C4xD8):33C2 = C42.495C23φ: C2/C1C2 ⊆ Out C4xD864(C4xD8):33C2128,2086
(C4xD8):34C2 = C42.496C23φ: C2/C1C2 ⊆ Out C4xD864(C4xD8):34C2128,2087
(C4xD8):35C2 = C42.72C23φ: C2/C1C2 ⊆ Out C4xD864(C4xD8):35C2128,2129
(C4xD8):36C2 = C42.533C23φ: C2/C1C2 ⊆ Out C4xD864(C4xD8):36C2128,2135
(C4xD8):37C2 = D16:4C4φ: C2/C1C2 ⊆ Out C4xD864(C4xD8):37C2128,909
(C4xD8):38C2 = C42.277C23φ: C2/C1C2 ⊆ Out C4xD832(C4xD8):38C2128,1680
(C4xD8):39C2 = C42.280C23φ: C2/C1C2 ⊆ Out C4xD864(C4xD8):39C2128,1683
(C4xD8):40C2 = C42.387C23φ: C2/C1C2 ⊆ Out C4xD864(C4xD8):40C2128,1907
(C4xD8):41C2 = C42.388C23φ: C2/C1C2 ⊆ Out C4xD864(C4xD8):41C2128,1908
(C4xD8):42C2 = C42.471C23φ: C2/C1C2 ⊆ Out C4xD832(C4xD8):42C2128,2054
(C4xD8):43C2 = C42.474C23φ: C2/C1C2 ⊆ Out C4xD832(C4xD8):43C2128,2057
(C4xD8):44C2 = C42.479C23φ: C2/C1C2 ⊆ Out C4xD864(C4xD8):44C2128,2062
(C4xD8):45C2 = C42.507C23φ: C2/C1C2 ⊆ Out C4xD864(C4xD8):45C2128,2098
(C4xD8):46C2 = C42.511C23φ: C2/C1C2 ⊆ Out C4xD864(C4xD8):46C2128,2102
(C4xD8):47C2 = C4xC4oD8φ: trivial image64(C4xD8):47C2128,1671

Non-split extensions G=N.Q with N=C4xD8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4xD8).1C2 = C4.16D16φ: C2/C1C2 ⊆ Out C4xD864(C4xD8).1C2128,63
(C4xD8).2C2 = C8:9D8φ: C2/C1C2 ⊆ Out C4xD864(C4xD8).2C2128,313
(C4xD8).3C2 = C8:6D8φ: C2/C1C2 ⊆ Out C4xD864(C4xD8).3C2128,321
(C4xD8).4C2 = C4xSD32φ: C2/C1C2 ⊆ Out C4xD864(C4xD8).4C2128,905
(C4xD8).5C2 = D8.4D4φ: C2/C1C2 ⊆ Out C4xD864(C4xD8).5C2128,940
(C4xD8).6C2 = D8:1Q8φ: C2/C1C2 ⊆ Out C4xD864(C4xD8).6C2128,956
(C4xD8).7C2 = D8:Q8φ: C2/C1C2 ⊆ Out C4xD864(C4xD8).7C2128,958
(C4xD8).8C2 = C42.501C23φ: C2/C1C2 ⊆ Out C4xD864(C4xD8).8C2128,2092
(C4xD8).9C2 = Q8xD8φ: C2/C1C2 ⊆ Out C4xD864(C4xD8).9C2128,2110
(C4xD8).10C2 = D8:6Q8φ: C2/C1C2 ⊆ Out C4xD864(C4xD8).10C2128,2112
(C4xD8).11C2 = C42.527C23φ: C2/C1C2 ⊆ Out C4xD864(C4xD8).11C2128,2125
(C4xD8).12C2 = D4:2M4(2)φ: C2/C1C2 ⊆ Out C4xD864(C4xD8).12C2128,318
(C4xD8).13C2 = D8.Q8φ: C2/C1C2 ⊆ Out C4xD864(C4xD8).13C2128,960
(C4xD8).14C2 = D8:C8φ: C2/C1C2 ⊆ Out C4xD864(C4xD8).14C2128,65
(C4xD8).15C2 = D8:5C8φ: C2/C1C2 ⊆ Out C4xD864(C4xD8).15C2128,312
(C4xD8).16C2 = C8:3M4(2)φ: C2/C1C2 ⊆ Out C4xD864(C4xD8).16C2128,326
(C4xD8).17C2 = D8:4Q8φ: C2/C1C2 ⊆ Out C4xD864(C4xD8).17C2128,2116
(C4xD8).18C2 = D8:5Q8φ: C2/C1C2 ⊆ Out C4xD864(C4xD8).18C2128,2121
(C4xD8).19C2 = SD32:3C4φ: C2/C1C2 ⊆ Out C4xD864(C4xD8).19C2128,907
(C4xD8).20C2 = C42.508C23φ: C2/C1C2 ⊆ Out C4xD864(C4xD8).20C2128,2099
(C4xD8).21C2 = C8xD8φ: trivial image64(C4xD8).21C2128,307

׿
x
:
Z
F
o
wr
Q
<