Copied to
clipboard

G = D86Q8order 128 = 27

The semidirect product of D8 and Q8 acting through Inn(D8)

p-group, metabelian, nilpotent (class 3), monomial

Aliases: D86Q8, C42.521C23, C4.952- 1+4, C4⋊C43D8, (C8×Q8)⋊14C2, D4.9(C2×Q8), C2.38(D4×Q8), C8.35(C2×Q8), C4⋊C4.415D4, C82Q822C2, (C4×D8).10C2, D4.Q811C2, D43Q815C2, D42Q845C2, C2.66(D4○D8), C4.49(C4○D8), (C2×Q8).186D4, C8.5Q810C2, C4.38(C22×Q8), C4⋊C4.269C23, C4⋊C8.327C22, (C2×C8).211C23, (C4×C8).123C22, (C2×C4).572C24, C4⋊Q8.201C22, C2.D8.71C22, (C2×D8).177C22, (C4×D4).210C22, (C2×D4).435C23, (C4×Q8).311C22, C4.Q8.115C22, C22.832(C22×D4), C42.C2.71C22, D4⋊C4.190C22, C2.76(C2×C4○D8), (C2×C4).178(C2×D4), SmallGroup(128,2112)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — D86Q8
C1C2C4C2×C4C42C4×D4D43Q8 — D86Q8
C1C2C2×C4 — D86Q8
C1C22C4×Q8 — D86Q8
C1C2C2C2×C4 — D86Q8

Generators and relations for D86Q8
 G = < a,b,c,d | a8=b2=c4=1, d2=c2, bab=a-1, ac=ca, ad=da, bc=cb, dbd-1=a4b, dcd-1=c-1 >

Subgroups: 328 in 176 conjugacy classes, 96 normal (24 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, D8, C22×C4, C2×D4, C2×Q8, C2×Q8, C4×C8, C4×C8, D4⋊C4, C4⋊C8, C4⋊C8, C4.Q8, C2.D8, C2.D8, C2×C4⋊C4, C4×D4, C4×Q8, C22⋊Q8, C42.C2, C4⋊Q8, C2×D8, C4×D8, C4×D8, C8×Q8, D42Q8, D4.Q8, C8.5Q8, C82Q8, D43Q8, D86Q8
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C24, C4○D8, C22×D4, C22×Q8, 2- 1+4, D4×Q8, C2×C4○D8, D4○D8, D86Q8

Smallest permutation representation of D86Q8
On 64 points
Generators in S64
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 29)(2 28)(3 27)(4 26)(5 25)(6 32)(7 31)(8 30)(9 39)(10 38)(11 37)(12 36)(13 35)(14 34)(15 33)(16 40)(17 51)(18 50)(19 49)(20 56)(21 55)(22 54)(23 53)(24 52)(41 59)(42 58)(43 57)(44 64)(45 63)(46 62)(47 61)(48 60)
(1 35 29 13)(2 36 30 14)(3 37 31 15)(4 38 32 16)(5 39 25 9)(6 40 26 10)(7 33 27 11)(8 34 28 12)(17 42 49 64)(18 43 50 57)(19 44 51 58)(20 45 52 59)(21 46 53 60)(22 47 54 61)(23 48 55 62)(24 41 56 63)
(1 63 29 41)(2 64 30 42)(3 57 31 43)(4 58 32 44)(5 59 25 45)(6 60 26 46)(7 61 27 47)(8 62 28 48)(9 20 39 52)(10 21 40 53)(11 22 33 54)(12 23 34 55)(13 24 35 56)(14 17 36 49)(15 18 37 50)(16 19 38 51)

G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,29)(2,28)(3,27)(4,26)(5,25)(6,32)(7,31)(8,30)(9,39)(10,38)(11,37)(12,36)(13,35)(14,34)(15,33)(16,40)(17,51)(18,50)(19,49)(20,56)(21,55)(22,54)(23,53)(24,52)(41,59)(42,58)(43,57)(44,64)(45,63)(46,62)(47,61)(48,60), (1,35,29,13)(2,36,30,14)(3,37,31,15)(4,38,32,16)(5,39,25,9)(6,40,26,10)(7,33,27,11)(8,34,28,12)(17,42,49,64)(18,43,50,57)(19,44,51,58)(20,45,52,59)(21,46,53,60)(22,47,54,61)(23,48,55,62)(24,41,56,63), (1,63,29,41)(2,64,30,42)(3,57,31,43)(4,58,32,44)(5,59,25,45)(6,60,26,46)(7,61,27,47)(8,62,28,48)(9,20,39,52)(10,21,40,53)(11,22,33,54)(12,23,34,55)(13,24,35,56)(14,17,36,49)(15,18,37,50)(16,19,38,51)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,29)(2,28)(3,27)(4,26)(5,25)(6,32)(7,31)(8,30)(9,39)(10,38)(11,37)(12,36)(13,35)(14,34)(15,33)(16,40)(17,51)(18,50)(19,49)(20,56)(21,55)(22,54)(23,53)(24,52)(41,59)(42,58)(43,57)(44,64)(45,63)(46,62)(47,61)(48,60), (1,35,29,13)(2,36,30,14)(3,37,31,15)(4,38,32,16)(5,39,25,9)(6,40,26,10)(7,33,27,11)(8,34,28,12)(17,42,49,64)(18,43,50,57)(19,44,51,58)(20,45,52,59)(21,46,53,60)(22,47,54,61)(23,48,55,62)(24,41,56,63), (1,63,29,41)(2,64,30,42)(3,57,31,43)(4,58,32,44)(5,59,25,45)(6,60,26,46)(7,61,27,47)(8,62,28,48)(9,20,39,52)(10,21,40,53)(11,22,33,54)(12,23,34,55)(13,24,35,56)(14,17,36,49)(15,18,37,50)(16,19,38,51) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,29),(2,28),(3,27),(4,26),(5,25),(6,32),(7,31),(8,30),(9,39),(10,38),(11,37),(12,36),(13,35),(14,34),(15,33),(16,40),(17,51),(18,50),(19,49),(20,56),(21,55),(22,54),(23,53),(24,52),(41,59),(42,58),(43,57),(44,64),(45,63),(46,62),(47,61),(48,60)], [(1,35,29,13),(2,36,30,14),(3,37,31,15),(4,38,32,16),(5,39,25,9),(6,40,26,10),(7,33,27,11),(8,34,28,12),(17,42,49,64),(18,43,50,57),(19,44,51,58),(20,45,52,59),(21,46,53,60),(22,47,54,61),(23,48,55,62),(24,41,56,63)], [(1,63,29,41),(2,64,30,42),(3,57,31,43),(4,58,32,44),(5,59,25,45),(6,60,26,46),(7,61,27,47),(8,62,28,48),(9,20,39,52),(10,21,40,53),(11,22,33,54),(12,23,34,55),(13,24,35,56),(14,17,36,49),(15,18,37,50),(16,19,38,51)]])

35 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4H4I4J4K4L···4Q8A8B8C8D8E···8J
order122222224···44444···488888···8
size111144442···24448···822224···4

35 irreducible representations

dim11111111222244
type+++++++++-+-+
imageC1C2C2C2C2C2C2C2D4Q8D4C4○D82- 1+4D4○D8
kernelD86Q8C4×D8C8×Q8D42Q8D4.Q8C8.5Q8C82Q8D43Q8C4⋊C4D8C2×Q8C4C4C2
# reps13124212341812

Matrix representation of D86Q8 in GL4(𝔽17) generated by

16000
01600
0006
00146
,
16000
01600
0010
00116
,
161600
2100
0010
0001
,
91600
14800
0049
00413
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,0,14,0,0,6,6],[16,0,0,0,0,16,0,0,0,0,1,1,0,0,0,16],[16,2,0,0,16,1,0,0,0,0,1,0,0,0,0,1],[9,14,0,0,16,8,0,0,0,0,4,4,0,0,9,13] >;

D86Q8 in GAP, Magma, Sage, TeX

D_8\rtimes_6Q_8
% in TeX

G:=Group("D8:6Q8");
// GroupNames label

G:=SmallGroup(128,2112);
// by ID

G=gap.SmallGroup(128,2112);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,112,253,568,758,346,80,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^4=1,d^2=c^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=a^4*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽