p-group, metabelian, nilpotent (class 4), monomial
Aliases: D8⋊1Q8, C4.13D16, C42.145D4, C4⋊C16⋊6C2, C8⋊2Q8⋊9C2, (C4×D8).6C2, C16⋊3C4⋊4C2, C2.7(C2×D16), (C2×C8).69D4, C8.29(C2×Q8), (C2×C4).151D8, C2.D16.3C2, C8.63(C4○D4), (C4×C8).65C22, (C2×C16).7C22, (C2×C8).526C23, C22.112(C2×D8), C4.8(C8.C22), C4.45(C22⋊Q8), C2.D8.11C22, C2.12(D4⋊Q8), C2.14(Q32⋊C2), (C2×D8).112C22, (C2×C4).794(C2×D4), SmallGroup(128,956)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D8⋊1Q8
G = < a,b,c,d | a8=b2=c4=1, d2=c2, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=a5b, dcd-1=c-1 >
Subgroups: 196 in 71 conjugacy classes, 34 normal (22 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, Q8, C23, C16, C42, C22⋊C4, C4⋊C4, C2×C8, D8, D8, C22×C4, C2×D4, C2×Q8, C4×C8, D4⋊C4, C2.D8, C2.D8, C2.D8, C2×C16, C4×D4, C4⋊Q8, C2×D8, C2.D16, C4⋊C16, C16⋊3C4, C4×D8, C8⋊2Q8, D8⋊1Q8
Quotients: C1, C2, C22, D4, Q8, C23, D8, C2×D4, C2×Q8, C4○D4, D16, C22⋊Q8, C2×D8, C8.C22, D4⋊Q8, C2×D16, Q32⋊C2, D8⋊1Q8
Character table of D8⋊1Q8
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | 8E | 8F | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 8 | 8 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | -√2 | √2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | √2 | -√2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | ζ165-ζ163 | -ζ167+ζ16 | -ζ165+ζ163 | -ζ167+ζ16 | ζ167-ζ16 | ζ165-ζ163 | -ζ165+ζ163 | ζ167-ζ16 | orthogonal lifted from D16 |
ρ15 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ16 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | ζ165-ζ163 | -ζ167+ζ16 | -ζ165+ζ163 | ζ167-ζ16 | ζ167-ζ16 | -ζ165+ζ163 | ζ165-ζ163 | -ζ167+ζ16 | orthogonal lifted from D16 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | -ζ167+ζ16 | -ζ165+ζ163 | ζ167-ζ16 | -ζ165+ζ163 | ζ165-ζ163 | -ζ167+ζ16 | ζ167-ζ16 | ζ165-ζ163 | orthogonal lifted from D16 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | ζ167-ζ16 | ζ165-ζ163 | -ζ167+ζ16 | ζ165-ζ163 | -ζ165+ζ163 | ζ167-ζ16 | -ζ167+ζ16 | -ζ165+ζ163 | orthogonal lifted from D16 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | -ζ167+ζ16 | -ζ165+ζ163 | ζ167-ζ16 | ζ165-ζ163 | ζ165-ζ163 | ζ167-ζ16 | -ζ167+ζ16 | -ζ165+ζ163 | orthogonal lifted from D16 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | -ζ165+ζ163 | ζ167-ζ16 | ζ165-ζ163 | ζ167-ζ16 | -ζ167+ζ16 | -ζ165+ζ163 | ζ165-ζ163 | -ζ167+ζ16 | orthogonal lifted from D16 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | -ζ165+ζ163 | ζ167-ζ16 | ζ165-ζ163 | -ζ167+ζ16 | -ζ167+ζ16 | ζ165-ζ163 | -ζ165+ζ163 | ζ167-ζ16 | orthogonal lifted from D16 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | ζ167-ζ16 | ζ165-ζ163 | -ζ167+ζ16 | -ζ165+ζ163 | -ζ165+ζ163 | -ζ167+ζ16 | ζ167-ζ16 | ζ165-ζ163 | orthogonal lifted from D16 |
ρ23 | 2 | -2 | -2 | 2 | 2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ24 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ25 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | -2i | 2i | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ26 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 2i | -2i | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ27 | 4 | -4 | -4 | 4 | 0 | 0 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ28 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | -2√2 | 2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q32⋊C2, Schur index 2 |
ρ29 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | -2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q32⋊C2, Schur index 2 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 8)(2 7)(3 6)(4 5)(9 12)(10 11)(13 16)(14 15)(17 20)(18 19)(21 24)(22 23)(25 28)(26 27)(29 32)(30 31)(33 39)(34 38)(35 37)(41 47)(42 46)(43 45)(49 55)(50 54)(51 53)(57 63)(58 62)(59 61)
(1 27 11 19)(2 28 12 20)(3 29 13 21)(4 30 14 22)(5 31 15 23)(6 32 16 24)(7 25 9 17)(8 26 10 18)(33 49 41 57)(34 50 42 58)(35 51 43 59)(36 52 44 60)(37 53 45 61)(38 54 46 62)(39 55 47 63)(40 56 48 64)
(1 45 11 37)(2 44 12 36)(3 43 13 35)(4 42 14 34)(5 41 15 33)(6 48 16 40)(7 47 9 39)(8 46 10 38)(17 63 25 55)(18 62 26 54)(19 61 27 53)(20 60 28 52)(21 59 29 51)(22 58 30 50)(23 57 31 49)(24 64 32 56)
G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,8)(2,7)(3,6)(4,5)(9,12)(10,11)(13,16)(14,15)(17,20)(18,19)(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)(33,39)(34,38)(35,37)(41,47)(42,46)(43,45)(49,55)(50,54)(51,53)(57,63)(58,62)(59,61), (1,27,11,19)(2,28,12,20)(3,29,13,21)(4,30,14,22)(5,31,15,23)(6,32,16,24)(7,25,9,17)(8,26,10,18)(33,49,41,57)(34,50,42,58)(35,51,43,59)(36,52,44,60)(37,53,45,61)(38,54,46,62)(39,55,47,63)(40,56,48,64), (1,45,11,37)(2,44,12,36)(3,43,13,35)(4,42,14,34)(5,41,15,33)(6,48,16,40)(7,47,9,39)(8,46,10,38)(17,63,25,55)(18,62,26,54)(19,61,27,53)(20,60,28,52)(21,59,29,51)(22,58,30,50)(23,57,31,49)(24,64,32,56)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,8)(2,7)(3,6)(4,5)(9,12)(10,11)(13,16)(14,15)(17,20)(18,19)(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)(33,39)(34,38)(35,37)(41,47)(42,46)(43,45)(49,55)(50,54)(51,53)(57,63)(58,62)(59,61), (1,27,11,19)(2,28,12,20)(3,29,13,21)(4,30,14,22)(5,31,15,23)(6,32,16,24)(7,25,9,17)(8,26,10,18)(33,49,41,57)(34,50,42,58)(35,51,43,59)(36,52,44,60)(37,53,45,61)(38,54,46,62)(39,55,47,63)(40,56,48,64), (1,45,11,37)(2,44,12,36)(3,43,13,35)(4,42,14,34)(5,41,15,33)(6,48,16,40)(7,47,9,39)(8,46,10,38)(17,63,25,55)(18,62,26,54)(19,61,27,53)(20,60,28,52)(21,59,29,51)(22,58,30,50)(23,57,31,49)(24,64,32,56) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,8),(2,7),(3,6),(4,5),(9,12),(10,11),(13,16),(14,15),(17,20),(18,19),(21,24),(22,23),(25,28),(26,27),(29,32),(30,31),(33,39),(34,38),(35,37),(41,47),(42,46),(43,45),(49,55),(50,54),(51,53),(57,63),(58,62),(59,61)], [(1,27,11,19),(2,28,12,20),(3,29,13,21),(4,30,14,22),(5,31,15,23),(6,32,16,24),(7,25,9,17),(8,26,10,18),(33,49,41,57),(34,50,42,58),(35,51,43,59),(36,52,44,60),(37,53,45,61),(38,54,46,62),(39,55,47,63),(40,56,48,64)], [(1,45,11,37),(2,44,12,36),(3,43,13,35),(4,42,14,34),(5,41,15,33),(6,48,16,40),(7,47,9,39),(8,46,10,38),(17,63,25,55),(18,62,26,54),(19,61,27,53),(20,60,28,52),(21,59,29,51),(22,58,30,50),(23,57,31,49),(24,64,32,56)]])
Matrix representation of D8⋊1Q8 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 14 | 3 |
0 | 0 | 14 | 14 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 14 | 3 |
0 | 0 | 3 | 3 |
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
7 | 1 | 0 | 0 |
1 | 10 | 0 | 0 |
0 | 0 | 4 | 6 |
0 | 0 | 6 | 13 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,14,14,0,0,3,14],[1,0,0,0,0,1,0,0,0,0,14,3,0,0,3,3],[0,16,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[7,1,0,0,1,10,0,0,0,0,4,6,0,0,6,13] >;
D8⋊1Q8 in GAP, Magma, Sage, TeX
D_8\rtimes_1Q_8
% in TeX
G:=Group("D8:1Q8");
// GroupNames label
G:=SmallGroup(128,956);
// by ID
G=gap.SmallGroup(128,956);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,56,141,64,422,1684,438,242,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=c^4=1,d^2=c^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a^5*b,d*c*d^-1=c^-1>;
// generators/relations
Export