Copied to
clipboard

G = D45D8order 128 = 27

2nd semidirect product of D4 and D8 acting through Inn(D4)

p-group, metabelian, nilpotent (class 3), monomial

Aliases: D45D8, C42.483C23, C4.692- 1+4, (C8×D4)⋊9C2, (C4×D8)⋊14C2, C4.45(C2×D8), C814(C4○D4), D42(C2.D8), C87D415C2, C4⋊C4.266D4, C82Q817C2, D46D414C2, C22.5(C2×D8), D4⋊Q814C2, (C2×D4).354D4, (C4×C8).87C22, C2.54(Q8○D8), C2.20(C22×D8), C4⋊C4.239C23, C4⋊C8.299C22, (C2×C8).195C23, (C2×C4).526C24, C22⋊C4.110D4, C22.D89C2, C23.477(C2×D4), C4⋊Q8.161C22, C2.79(D46D4), C2.D8.61C22, (C4×D4).339C22, (C2×D4).248C23, (C2×D8).142C22, C4⋊D4.97C22, C22⋊C8.185C22, (C22×C8).164C22, C22.786(C22×D4), D4⋊C4.169C22, (C22×C4).1158C23, (C2×D4)(C2.D8), (C2×C2.D8)⋊28C2, C4.108(C2×C4○D4), (C2×C4).171(C2×D4), (C2×C4⋊C4).678C22, SmallGroup(128,2066)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — D45D8
C1C2C4C2×C4C22×C4C2×C4⋊C4D46D4 — D45D8
C1C2C2×C4 — D45D8
C1C22C4×D4 — D45D8
C1C2C2C2×C4 — D45D8

Generators and relations for D45D8
 G = < a,b,c,d | a4=b2=c8=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a2b, dcd=c-1 >

Subgroups: 424 in 210 conjugacy classes, 96 normal (24 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C2×C8, D8, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C4×C8, C22⋊C8, D4⋊C4, C4⋊C8, C2.D8, C2.D8, C2×C4⋊C4, C4×D4, C4×D4, C4⋊D4, C22⋊Q8, C22.D4, C4⋊Q8, C22×C8, C2×D8, C2×C4○D4, C2×C2.D8, C8×D4, C4×D8, C87D4, D4⋊Q8, C22.D8, C82Q8, D46D4, D45D8
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C4○D4, C24, C2×D8, C22×D4, C2×C4○D4, 2- 1+4, D46D4, C22×D8, Q8○D8, D45D8

Smallest permutation representation of D45D8
On 64 points
Generators in S64
(1 10 59 38)(2 11 60 39)(3 12 61 40)(4 13 62 33)(5 14 63 34)(6 15 64 35)(7 16 57 36)(8 9 58 37)(17 55 43 29)(18 56 44 30)(19 49 45 31)(20 50 46 32)(21 51 47 25)(22 52 48 26)(23 53 41 27)(24 54 42 28)
(1 47)(2 48)(3 41)(4 42)(5 43)(6 44)(7 45)(8 46)(9 50)(10 51)(11 52)(12 53)(13 54)(14 55)(15 56)(16 49)(17 63)(18 64)(19 57)(20 58)(21 59)(22 60)(23 61)(24 62)(25 38)(26 39)(27 40)(28 33)(29 34)(30 35)(31 36)(32 37)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 8)(2 7)(3 6)(4 5)(9 10)(11 16)(12 15)(13 14)(17 42)(18 41)(19 48)(20 47)(21 46)(22 45)(23 44)(24 43)(25 50)(26 49)(27 56)(28 55)(29 54)(30 53)(31 52)(32 51)(33 34)(35 40)(36 39)(37 38)(57 60)(58 59)(61 64)(62 63)

G:=sub<Sym(64)| (1,10,59,38)(2,11,60,39)(3,12,61,40)(4,13,62,33)(5,14,63,34)(6,15,64,35)(7,16,57,36)(8,9,58,37)(17,55,43,29)(18,56,44,30)(19,49,45,31)(20,50,46,32)(21,51,47,25)(22,52,48,26)(23,53,41,27)(24,54,42,28), (1,47)(2,48)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,50)(10,51)(11,52)(12,53)(13,54)(14,55)(15,56)(16,49)(17,63)(18,64)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(25,38)(26,39)(27,40)(28,33)(29,34)(30,35)(31,36)(32,37), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,8)(2,7)(3,6)(4,5)(9,10)(11,16)(12,15)(13,14)(17,42)(18,41)(19,48)(20,47)(21,46)(22,45)(23,44)(24,43)(25,50)(26,49)(27,56)(28,55)(29,54)(30,53)(31,52)(32,51)(33,34)(35,40)(36,39)(37,38)(57,60)(58,59)(61,64)(62,63)>;

G:=Group( (1,10,59,38)(2,11,60,39)(3,12,61,40)(4,13,62,33)(5,14,63,34)(6,15,64,35)(7,16,57,36)(8,9,58,37)(17,55,43,29)(18,56,44,30)(19,49,45,31)(20,50,46,32)(21,51,47,25)(22,52,48,26)(23,53,41,27)(24,54,42,28), (1,47)(2,48)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,50)(10,51)(11,52)(12,53)(13,54)(14,55)(15,56)(16,49)(17,63)(18,64)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(25,38)(26,39)(27,40)(28,33)(29,34)(30,35)(31,36)(32,37), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,8)(2,7)(3,6)(4,5)(9,10)(11,16)(12,15)(13,14)(17,42)(18,41)(19,48)(20,47)(21,46)(22,45)(23,44)(24,43)(25,50)(26,49)(27,56)(28,55)(29,54)(30,53)(31,52)(32,51)(33,34)(35,40)(36,39)(37,38)(57,60)(58,59)(61,64)(62,63) );

G=PermutationGroup([[(1,10,59,38),(2,11,60,39),(3,12,61,40),(4,13,62,33),(5,14,63,34),(6,15,64,35),(7,16,57,36),(8,9,58,37),(17,55,43,29),(18,56,44,30),(19,49,45,31),(20,50,46,32),(21,51,47,25),(22,52,48,26),(23,53,41,27),(24,54,42,28)], [(1,47),(2,48),(3,41),(4,42),(5,43),(6,44),(7,45),(8,46),(9,50),(10,51),(11,52),(12,53),(13,54),(14,55),(15,56),(16,49),(17,63),(18,64),(19,57),(20,58),(21,59),(22,60),(23,61),(24,62),(25,38),(26,39),(27,40),(28,33),(29,34),(30,35),(31,36),(32,37)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,8),(2,7),(3,6),(4,5),(9,10),(11,16),(12,15),(13,14),(17,42),(18,41),(19,48),(20,47),(21,46),(22,45),(23,44),(24,43),(25,50),(26,49),(27,56),(28,55),(29,54),(30,53),(31,52),(32,51),(33,34),(35,40),(36,39),(37,38),(57,60),(58,59),(61,64),(62,63)]])

35 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E···4K4L4M4N4O8A8B8C8D8E···8J
order122222222244444···4444488888···8
size111122228822224···4888822224···4

35 irreducible representations

dim1111111112222244
type+++++++++++++--
imageC1C2C2C2C2C2C2C2C2D4D4D4C4○D4D82- 1+4Q8○D8
kernelD45D8C2×C2.D8C8×D4C4×D8C87D4D4⋊Q8C22.D8C82Q8D46D4C22⋊C4C4⋊C4C2×D4C8D4C4C2
# reps1211224122114812

Matrix representation of D45D8 in GL4(𝔽17) generated by

1000
0100
00130
0044
,
16000
01600
0048
001313
,
14300
141400
0010
0001
,
14300
3300
0010
001616
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,13,4,0,0,0,4],[16,0,0,0,0,16,0,0,0,0,4,13,0,0,8,13],[14,14,0,0,3,14,0,0,0,0,1,0,0,0,0,1],[14,3,0,0,3,3,0,0,0,0,1,16,0,0,0,16] >;

D45D8 in GAP, Magma, Sage, TeX

D_4\rtimes_5D_8
% in TeX

G:=Group("D4:5D8");
// GroupNames label

G:=SmallGroup(128,2066);
// by ID

G=gap.SmallGroup(128,2066);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,112,253,758,100,346,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^8=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽