p-group, metabelian, nilpotent (class 4), monomial
Aliases: D8⋊2Q8, C4.10SD32, C42.147D4, C4⋊C16⋊12C2, (C4×D8).7C2, C16⋊4C4⋊7C2, (C2×C8).71D4, C8.31(C2×Q8), C8⋊2Q8⋊10C2, (C2×C4).153D8, C2.D16.5C2, C8.65(C4○D4), (C4×C8).67C22, C2.11(C2×SD32), (C2×C16).43C22, (C2×C8).528C23, C22.114(C2×D8), C4.47(C22⋊Q8), C2.14(C16⋊C22), C2.D8.13C22, C2.14(D4⋊Q8), (C2×D8).113C22, C4.10(C8.C22), (C2×C4).796(C2×D4), SmallGroup(128,958)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D8⋊Q8
G = < a,b,c,d | a8=b2=c4=1, d2=c2, bab=dad-1=a-1, ac=ca, cbc-1=a4b, dbd-1=a5b, dcd-1=c-1 >
Subgroups: 196 in 71 conjugacy classes, 34 normal (22 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, Q8, C23, C16, C42, C22⋊C4, C4⋊C4, C2×C8, D8, D8, C22×C4, C2×D4, C2×Q8, C4×C8, D4⋊C4, C2.D8, C2.D8, C2.D8, C2×C16, C4×D4, C4⋊Q8, C2×D8, C2.D16, C4⋊C16, C16⋊4C4, C4×D8, C8⋊2Q8, D8⋊Q8
Quotients: C1, C2, C22, D4, Q8, C23, D8, C2×D4, C2×Q8, C4○D4, SD32, C22⋊Q8, C2×D8, C8.C22, D4⋊Q8, C2×SD32, C16⋊C22, D8⋊Q8
Character table of D8⋊Q8
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | 8E | 8F | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 8 | 8 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | -√2 | √2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | √2 | -√2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ15 | 2 | -2 | -2 | 2 | 2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ16 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | -2i | 2i | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 2i | -2i | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | ζ165+ζ163 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ167+ζ16 | ζ1613+ζ1611 | complex lifted from SD32 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ165+ζ163 | ζ167+ζ16 | ζ1615+ζ169 | ζ165+ζ163 | complex lifted from SD32 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | ζ1615+ζ169 | ζ167+ζ16 | ζ1613+ζ1611 | ζ165+ζ163 | ζ167+ζ16 | complex lifted from SD32 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | ζ167+ζ16 | ζ1615+ζ169 | ζ165+ζ163 | ζ1613+ζ1611 | ζ1615+ζ169 | complex lifted from SD32 |
ρ23 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | ζ165+ζ163 | ζ1615+ζ169 | ζ167+ζ16 | ζ1613+ζ1611 | complex lifted from SD32 |
ρ24 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1613+ζ1611 | ζ167+ζ16 | ζ1615+ζ169 | ζ165+ζ163 | complex lifted from SD32 |
ρ25 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | ζ167+ζ16 | ζ165+ζ163 | ζ1613+ζ1611 | ζ1615+ζ169 | complex lifted from SD32 |
ρ26 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ165+ζ163 | ζ167+ζ16 | complex lifted from SD32 |
ρ27 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | -2√2 | 2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C16⋊C22 |
ρ28 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | -2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C16⋊C22 |
ρ29 | 4 | -4 | -4 | 4 | 0 | 0 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 8)(2 7)(3 6)(4 5)(9 12)(10 11)(13 16)(14 15)(17 20)(18 19)(21 24)(22 23)(25 28)(26 27)(29 32)(30 31)(33 39)(34 38)(35 37)(41 47)(42 46)(43 45)(49 55)(50 54)(51 53)(57 63)(58 62)(59 61)
(1 25 15 21)(2 26 16 22)(3 27 9 23)(4 28 10 24)(5 29 11 17)(6 30 12 18)(7 31 13 19)(8 32 14 20)(33 55 45 59)(34 56 46 60)(35 49 47 61)(36 50 48 62)(37 51 41 63)(38 52 42 64)(39 53 43 57)(40 54 44 58)
(1 41 15 37)(2 48 16 36)(3 47 9 35)(4 46 10 34)(5 45 11 33)(6 44 12 40)(7 43 13 39)(8 42 14 38)(17 59 29 55)(18 58 30 54)(19 57 31 53)(20 64 32 52)(21 63 25 51)(22 62 26 50)(23 61 27 49)(24 60 28 56)
G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,8)(2,7)(3,6)(4,5)(9,12)(10,11)(13,16)(14,15)(17,20)(18,19)(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)(33,39)(34,38)(35,37)(41,47)(42,46)(43,45)(49,55)(50,54)(51,53)(57,63)(58,62)(59,61), (1,25,15,21)(2,26,16,22)(3,27,9,23)(4,28,10,24)(5,29,11,17)(6,30,12,18)(7,31,13,19)(8,32,14,20)(33,55,45,59)(34,56,46,60)(35,49,47,61)(36,50,48,62)(37,51,41,63)(38,52,42,64)(39,53,43,57)(40,54,44,58), (1,41,15,37)(2,48,16,36)(3,47,9,35)(4,46,10,34)(5,45,11,33)(6,44,12,40)(7,43,13,39)(8,42,14,38)(17,59,29,55)(18,58,30,54)(19,57,31,53)(20,64,32,52)(21,63,25,51)(22,62,26,50)(23,61,27,49)(24,60,28,56)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,8)(2,7)(3,6)(4,5)(9,12)(10,11)(13,16)(14,15)(17,20)(18,19)(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)(33,39)(34,38)(35,37)(41,47)(42,46)(43,45)(49,55)(50,54)(51,53)(57,63)(58,62)(59,61), (1,25,15,21)(2,26,16,22)(3,27,9,23)(4,28,10,24)(5,29,11,17)(6,30,12,18)(7,31,13,19)(8,32,14,20)(33,55,45,59)(34,56,46,60)(35,49,47,61)(36,50,48,62)(37,51,41,63)(38,52,42,64)(39,53,43,57)(40,54,44,58), (1,41,15,37)(2,48,16,36)(3,47,9,35)(4,46,10,34)(5,45,11,33)(6,44,12,40)(7,43,13,39)(8,42,14,38)(17,59,29,55)(18,58,30,54)(19,57,31,53)(20,64,32,52)(21,63,25,51)(22,62,26,50)(23,61,27,49)(24,60,28,56) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,8),(2,7),(3,6),(4,5),(9,12),(10,11),(13,16),(14,15),(17,20),(18,19),(21,24),(22,23),(25,28),(26,27),(29,32),(30,31),(33,39),(34,38),(35,37),(41,47),(42,46),(43,45),(49,55),(50,54),(51,53),(57,63),(58,62),(59,61)], [(1,25,15,21),(2,26,16,22),(3,27,9,23),(4,28,10,24),(5,29,11,17),(6,30,12,18),(7,31,13,19),(8,32,14,20),(33,55,45,59),(34,56,46,60),(35,49,47,61),(36,50,48,62),(37,51,41,63),(38,52,42,64),(39,53,43,57),(40,54,44,58)], [(1,41,15,37),(2,48,16,36),(3,47,9,35),(4,46,10,34),(5,45,11,33),(6,44,12,40),(7,43,13,39),(8,42,14,38),(17,59,29,55),(18,58,30,54),(19,57,31,53),(20,64,32,52),(21,63,25,51),(22,62,26,50),(23,61,27,49),(24,60,28,56)]])
Matrix representation of D8⋊Q8 ►in GL4(𝔽17) generated by
3 | 14 | 0 | 0 |
3 | 3 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
3 | 14 | 0 | 0 |
14 | 14 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 1 | 2 |
0 | 0 | 16 | 16 |
10 | 16 | 0 | 0 |
16 | 7 | 0 | 0 |
0 | 0 | 10 | 10 |
0 | 0 | 12 | 7 |
G:=sub<GL(4,GF(17))| [3,3,0,0,14,3,0,0,0,0,1,0,0,0,0,1],[3,14,0,0,14,14,0,0,0,0,1,0,0,0,0,1],[0,16,0,0,1,0,0,0,0,0,1,16,0,0,2,16],[10,16,0,0,16,7,0,0,0,0,10,12,0,0,10,7] >;
D8⋊Q8 in GAP, Magma, Sage, TeX
D_8\rtimes Q_8
% in TeX
G:=Group("D8:Q8");
// GroupNames label
G:=SmallGroup(128,958);
// by ID
G=gap.SmallGroup(128,958);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,504,141,64,422,1684,438,242,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=c^4=1,d^2=c^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,c*b*c^-1=a^4*b,d*b*d^-1=a^5*b,d*c*d^-1=c^-1>;
// generators/relations
Export