Extensions 1→N→G→Q→1 with N=C4 and Q=C4×C8

Direct product G=N×Q with N=C4 and Q=C4×C8
dρLabelID
C42×C8128C4^2xC8128,456

Semidirect products G=N:Q with N=C4 and Q=C4×C8
extensionφ:Q→Aut NdρLabelID
C41(C4×C8) = C4×C4⋊C8φ: C4×C8/C42C2 ⊆ Aut C4128C4:1(C4xC8)128,498
C42(C4×C8) = C8×C4⋊C4φ: C4×C8/C2×C8C2 ⊆ Aut C4128C4:2(C4xC8)128,501

Non-split extensions G=N.Q with N=C4 and Q=C4×C8
extensionφ:Q→Aut NdρLabelID
C4.1(C4×C8) = C426C8φ: C4×C8/C42C2 ⊆ Aut C432C4.1(C4xC8)128,8
C4.2(C4×C8) = C42.385D4φ: C4×C8/C42C2 ⊆ Aut C4128C4.2(C4xC8)128,9
C4.3(C4×C8) = C42.7C8φ: C4×C8/C42C2 ⊆ Aut C432C4.3(C4xC8)128,108
C4.4(C4×C8) = C82⋊C2φ: C4×C8/C42C2 ⊆ Aut C464C4.4(C4xC8)128,182
C4.5(C4×C8) = C4×M5(2)φ: C4×C8/C42C2 ⊆ Aut C464C4.5(C4xC8)128,839
C4.6(C4×C8) = M4(2)⋊C8φ: C4×C8/C2×C8C2 ⊆ Aut C464C4.6(C4xC8)128,10
C4.7(C4×C8) = C42.46Q8φ: C4×C8/C2×C8C2 ⊆ Aut C4128C4.7(C4xC8)128,11
C4.8(C4×C8) = M5(2)⋊7C4φ: C4×C8/C2×C8C2 ⊆ Aut C464C4.8(C4xC8)128,111
C4.9(C4×C8) = C8×M4(2)φ: C4×C8/C2×C8C2 ⊆ Aut C464C4.9(C4xC8)128,181
C4.10(C4×C8) = C162M5(2)φ: C4×C8/C2×C8C2 ⊆ Aut C464C4.10(C4xC8)128,840
C4.11(C4×C8) = C165C8central extension (φ=1)128C4.11(C4xC8)128,43
C4.12(C4×C8) = C325C4central extension (φ=1)128C4.12(C4xC8)128,129
C4.13(C4×C8) = C2×C8⋊C8central extension (φ=1)128C4.13(C4xC8)128,180
C4.14(C4×C8) = C424C8central extension (φ=1)128C4.14(C4xC8)128,476
C4.15(C4×C8) = C2×C165C4central extension (φ=1)128C4.15(C4xC8)128,838
C4.16(C4×C8) = C421C8central stem extension (φ=1)32C4.16(C4xC8)128,6
C4.17(C4×C8) = C42.20D4central stem extension (φ=1)64C4.17(C4xC8)128,7
C4.18(C4×C8) = C16⋊C8central stem extension (φ=1)128C4.18(C4xC8)128,45
C4.19(C4×C8) = C42.2C8central stem extension (φ=1)32C4.19(C4xC8)128,107
C4.20(C4×C8) = C32⋊C4central stem extension (φ=1)324C4.20(C4xC8)128,130

׿
×
𝔽