Copied to
clipboard

G = C16⋊C8order 128 = 27

2nd semidirect product of C16 and C8 acting via C8/C2=C4

p-group, metacyclic, nilpotent (class 2), monomial

Aliases: C162C8, C8.20M4(2), (C4×C8).3C4, C4.18(C4×C8), C8.21(C2×C8), (C2×C16).3C4, C8⋊C8.8C2, C165C4.5C2, C2.3(C8⋊C8), (C2×C4).82C42, C2.1(C16⋊C4), C4.14(C8⋊C4), (C4×C8).302C22, C42.291(C2×C4), (C2×C4).53M4(2), C22.11(C8⋊C4), (C2×C8).236(C2×C4), SmallGroup(128,45)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C16⋊C8
C1C2C22C2×C4C42C4×C8C8⋊C8 — C16⋊C8
C1C4 — C16⋊C8
C1C2×C4 — C16⋊C8
C1C2C2C2C2C2×C4C2×C4C4×C8 — C16⋊C8

Generators and relations for C16⋊C8
 G = < a,b | a16=b8=1, bab-1=a5 >

2C4
2C4
4C8
4C8
2C2×C8
2C2×C8
2C16
2C16

Smallest permutation representation of C16⋊C8
Regular action on 128 points
Generators in S128
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)
(1 21 48 76 128 95 106 62)(2 18 41 65 113 92 99 51)(3 31 34 70 114 89 108 56)(4 28 43 75 115 86 101 61)(5 25 36 80 116 83 110 50)(6 22 45 69 117 96 103 55)(7 19 38 74 118 93 112 60)(8 32 47 79 119 90 105 49)(9 29 40 68 120 87 98 54)(10 26 33 73 121 84 107 59)(11 23 42 78 122 81 100 64)(12 20 35 67 123 94 109 53)(13 17 44 72 124 91 102 58)(14 30 37 77 125 88 111 63)(15 27 46 66 126 85 104 52)(16 24 39 71 127 82 97 57)

G:=sub<Sym(128)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,21,48,76,128,95,106,62)(2,18,41,65,113,92,99,51)(3,31,34,70,114,89,108,56)(4,28,43,75,115,86,101,61)(5,25,36,80,116,83,110,50)(6,22,45,69,117,96,103,55)(7,19,38,74,118,93,112,60)(8,32,47,79,119,90,105,49)(9,29,40,68,120,87,98,54)(10,26,33,73,121,84,107,59)(11,23,42,78,122,81,100,64)(12,20,35,67,123,94,109,53)(13,17,44,72,124,91,102,58)(14,30,37,77,125,88,111,63)(15,27,46,66,126,85,104,52)(16,24,39,71,127,82,97,57)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,21,48,76,128,95,106,62)(2,18,41,65,113,92,99,51)(3,31,34,70,114,89,108,56)(4,28,43,75,115,86,101,61)(5,25,36,80,116,83,110,50)(6,22,45,69,117,96,103,55)(7,19,38,74,118,93,112,60)(8,32,47,79,119,90,105,49)(9,29,40,68,120,87,98,54)(10,26,33,73,121,84,107,59)(11,23,42,78,122,81,100,64)(12,20,35,67,123,94,109,53)(13,17,44,72,124,91,102,58)(14,30,37,77,125,88,111,63)(15,27,46,66,126,85,104,52)(16,24,39,71,127,82,97,57) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)], [(1,21,48,76,128,95,106,62),(2,18,41,65,113,92,99,51),(3,31,34,70,114,89,108,56),(4,28,43,75,115,86,101,61),(5,25,36,80,116,83,110,50),(6,22,45,69,117,96,103,55),(7,19,38,74,118,93,112,60),(8,32,47,79,119,90,105,49),(9,29,40,68,120,87,98,54),(10,26,33,73,121,84,107,59),(11,23,42,78,122,81,100,64),(12,20,35,67,123,94,109,53),(13,17,44,72,124,91,102,58),(14,30,37,77,125,88,111,63),(15,27,46,66,126,85,104,52),(16,24,39,71,127,82,97,57)]])

44 conjugacy classes

class 1 2A2B2C4A4B4C4D4E4F4G4H8A···8H8I···8P16A···16P
order1222444444448···88···816···16
size1111111122222···24···44···4

44 irreducible representations

dim111111224
type+++
imageC1C2C2C4C4C8M4(2)M4(2)C16⋊C4
kernelC16⋊C8C8⋊C8C165C4C4×C8C2×C16C16C8C2×C4C2
# reps1124816444

Matrix representation of C16⋊C8 in GL6(𝔽17)

3100000
14140000
0061520
0000416
001471516
00157913
,
880000
190000
0091600
0014800
001513615
0058911

G:=sub<GL(6,GF(17))| [3,14,0,0,0,0,10,14,0,0,0,0,0,0,6,0,14,15,0,0,15,0,7,7,0,0,2,4,15,9,0,0,0,16,16,13],[8,1,0,0,0,0,8,9,0,0,0,0,0,0,9,14,15,5,0,0,16,8,13,8,0,0,0,0,6,9,0,0,0,0,15,11] >;

C16⋊C8 in GAP, Magma, Sage, TeX

C_{16}\rtimes C_8
% in TeX

G:=Group("C16:C8");
// GroupNames label

G:=SmallGroup(128,45);
// by ID

G=gap.SmallGroup(128,45);
# by ID

G:=PCGroup([7,-2,2,-2,2,-2,2,-2,28,253,64,723,100,2019,136,172]);
// Polycyclic

G:=Group<a,b|a^16=b^8=1,b*a*b^-1=a^5>;
// generators/relations

Export

Subgroup lattice of C16⋊C8 in TeX

׿
×
𝔽