Extensions 1→N→G→Q→1 with N=C2 and Q=C4⋊SD16

Direct product G=N×Q with N=C2 and Q=C4⋊SD16
dρLabelID
C2×C4⋊SD1664C2xC4:SD16128,1764


Non-split extensions G=N.Q with N=C2 and Q=C4⋊SD16
extensionφ:Q→Aut NdρLabelID
C2.1(C4⋊SD16) = C42.99D4central extension (φ=1)128C2.1(C4:SD16)128,535
C2.2(C4⋊SD16) = (C2×SD16)⋊15C4central extension (φ=1)64C2.2(C4:SD16)128,612
C2.3(C4⋊SD16) = C4.67(C4×D4)central extension (φ=1)64C2.3(C4:SD16)128,658
C2.4(C4⋊SD16) = C42.30Q8central extension (φ=1)128C2.4(C4:SD16)128,680
C2.5(C4⋊SD16) = C42.118D4central extension (φ=1)64C2.5(C4:SD16)128,714
C2.6(C4⋊SD16) = C814SD16central stem extension (φ=1)64C2.6(C4:SD16)128,398
C2.7(C4⋊SD16) = C813SD16central stem extension (φ=1)64C2.7(C4:SD16)128,400
C2.8(C4⋊SD16) = Q81Q16central stem extension (φ=1)128C2.8(C4:SD16)128,402
C2.9(C4⋊SD16) = C8⋊SD16central stem extension (φ=1)64C2.9(C4:SD16)128,418
C2.10(C4⋊SD16) = C82SD16central stem extension (φ=1)64C2.10(C4:SD16)128,420
C2.11(C4⋊SD16) = C8.SD16central stem extension (φ=1)128C2.11(C4:SD16)128,422
C2.12(C4⋊SD16) = (C2×C8)⋊20D4central stem extension (φ=1)64C2.12(C4:SD16)128,746
C2.13(C4⋊SD16) = C4⋊C47D4central stem extension (φ=1)64C2.13(C4:SD16)128,773
C2.14(C4⋊SD16) = (C2×C4)⋊5SD16central stem extension (φ=1)64C2.14(C4:SD16)128,787
C2.15(C4⋊SD16) = C4⋊C4.106D4central stem extension (φ=1)64C2.15(C4:SD16)128,797
C2.16(C4⋊SD16) = (C2×C4).19Q16central stem extension (φ=1)128C2.16(C4:SD16)128,804
C2.17(C4⋊SD16) = C2.(C83Q8)central stem extension (φ=1)128C2.17(C4:SD16)128,816

׿
×
𝔽