p-group, metabelian, nilpotent (class 3), monomial
Aliases: Q8⋊1Q16, C8.34SD16, C42.221C23, (C8×Q8).4C2, C8⋊1C8.9C2, C4⋊C4.196D4, (C2×C8).342D4, C4.24(C2×Q16), C4.41(C4○D8), (C4×C8).52C22, (C2×Q8).148D4, Q8⋊Q8.6C2, C4⋊Q16.4C2, C4.80(C2×SD16), C4⋊Q8.44C22, C4⋊C8.175C22, C2.8(C4⋊SD16), C4.119(C8⋊C22), C2.7(D4.5D4), C4.10D8.10C2, C2.7(C8.18D4), (C4×Q8).263C22, C22.182(C4⋊D4), (C2×C4).6(C4○D4), (C2×C4).1256(C2×D4), SmallGroup(128,402)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for Q8⋊1Q16
G = < a,b,c,d | a4=c8=1, b2=a2, d2=c4, bab-1=dad-1=a-1, ac=ca, bc=cb, dbd-1=a-1b, dcd-1=c-1 >
Subgroups: 160 in 78 conjugacy classes, 36 normal (24 characteristic)
C1, C2, C4, C4, C22, C8, C8, C2×C4, C2×C4, Q8, Q8, C42, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, Q16, C2×Q8, C2×Q8, C4×C8, C4×C8, Q8⋊C4, C4⋊C8, C4⋊C8, C4⋊C8, C4.Q8, C4×Q8, C4⋊Q8, C2×Q16, C4.10D8, C8⋊1C8, C8×Q8, Q8⋊Q8, C4⋊Q16, Q8⋊1Q16
Quotients: C1, C2, C22, D4, C23, SD16, Q16, C2×D4, C4○D4, C4⋊D4, C2×SD16, C2×Q16, C4○D8, C8⋊C22, C4⋊SD16, C8.18D4, D4.5D4, Q8⋊1Q16
Character table of Q8⋊1Q16
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | 8M | 8N | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | √2 | -√2 | -√2 | √2 | -√2 | √2 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ14 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | √2 | -√2 | -√2 | -√2 | √2 | √2 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ15 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | -√2 | √2 | √2 | √2 | -√2 | -√2 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -√2 | √2 | √2 | -√2 | √2 | -√2 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ17 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | 2i | 0 | 0 | 0 | -2i | 0 | 0 | √2 | -√2 | -√2 | √2 | √-2 | -√-2 | √-2 | √2 | -√2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ18 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | -2i | 0 | 0 | 0 | 2i | 0 | 0 | -√2 | √2 | √2 | -√2 | √-2 | -√-2 | √-2 | -√2 | √2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ19 | 2 | -2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ20 | 2 | -2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
ρ21 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 2i | -2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 2 | -2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ24 | 2 | -2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ25 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | 2i | 0 | 0 | 0 | -2i | 0 | 0 | -√2 | √2 | √2 | -√2 | -√-2 | √-2 | -√-2 | -√2 | √2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ26 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | -2i | 0 | 0 | 0 | 2i | 0 | 0 | √2 | -√2 | -√2 | √2 | -√-2 | √-2 | -√-2 | √2 | -√2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ27 | 4 | -4 | 4 | -4 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ28 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | -2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.5D4, Schur index 2 |
ρ29 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | -2√2 | 2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.5D4, Schur index 2 |
(1 99 61 51)(2 100 62 52)(3 101 63 53)(4 102 64 54)(5 103 57 55)(6 104 58 56)(7 97 59 49)(8 98 60 50)(9 92 122 118)(10 93 123 119)(11 94 124 120)(12 95 125 113)(13 96 126 114)(14 89 127 115)(15 90 128 116)(16 91 121 117)(17 30 78 68)(18 31 79 69)(19 32 80 70)(20 25 73 71)(21 26 74 72)(22 27 75 65)(23 28 76 66)(24 29 77 67)(33 107 47 84)(34 108 48 85)(35 109 41 86)(36 110 42 87)(37 111 43 88)(38 112 44 81)(39 105 45 82)(40 106 46 83)
(1 73 61 20)(2 74 62 21)(3 75 63 22)(4 76 64 23)(5 77 57 24)(6 78 58 17)(7 79 59 18)(8 80 60 19)(9 82 122 105)(10 83 123 106)(11 84 124 107)(12 85 125 108)(13 86 126 109)(14 87 127 110)(15 88 128 111)(16 81 121 112)(25 51 71 99)(26 52 72 100)(27 53 65 101)(28 54 66 102)(29 55 67 103)(30 56 68 104)(31 49 69 97)(32 50 70 98)(33 94 47 120)(34 95 48 113)(35 96 41 114)(36 89 42 115)(37 90 43 116)(38 91 44 117)(39 92 45 118)(40 93 46 119)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 93 5 89)(2 92 6 96)(3 91 7 95)(4 90 8 94)(9 104 13 100)(10 103 14 99)(11 102 15 98)(12 101 16 97)(17 109 21 105)(18 108 22 112)(19 107 23 111)(20 106 24 110)(25 40 29 36)(26 39 30 35)(27 38 31 34)(28 37 32 33)(41 72 45 68)(42 71 46 67)(43 70 47 66)(44 69 48 65)(49 125 53 121)(50 124 54 128)(51 123 55 127)(52 122 56 126)(57 115 61 119)(58 114 62 118)(59 113 63 117)(60 120 64 116)(73 83 77 87)(74 82 78 86)(75 81 79 85)(76 88 80 84)
G:=sub<Sym(128)| (1,99,61,51)(2,100,62,52)(3,101,63,53)(4,102,64,54)(5,103,57,55)(6,104,58,56)(7,97,59,49)(8,98,60,50)(9,92,122,118)(10,93,123,119)(11,94,124,120)(12,95,125,113)(13,96,126,114)(14,89,127,115)(15,90,128,116)(16,91,121,117)(17,30,78,68)(18,31,79,69)(19,32,80,70)(20,25,73,71)(21,26,74,72)(22,27,75,65)(23,28,76,66)(24,29,77,67)(33,107,47,84)(34,108,48,85)(35,109,41,86)(36,110,42,87)(37,111,43,88)(38,112,44,81)(39,105,45,82)(40,106,46,83), (1,73,61,20)(2,74,62,21)(3,75,63,22)(4,76,64,23)(5,77,57,24)(6,78,58,17)(7,79,59,18)(8,80,60,19)(9,82,122,105)(10,83,123,106)(11,84,124,107)(12,85,125,108)(13,86,126,109)(14,87,127,110)(15,88,128,111)(16,81,121,112)(25,51,71,99)(26,52,72,100)(27,53,65,101)(28,54,66,102)(29,55,67,103)(30,56,68,104)(31,49,69,97)(32,50,70,98)(33,94,47,120)(34,95,48,113)(35,96,41,114)(36,89,42,115)(37,90,43,116)(38,91,44,117)(39,92,45,118)(40,93,46,119), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,93,5,89)(2,92,6,96)(3,91,7,95)(4,90,8,94)(9,104,13,100)(10,103,14,99)(11,102,15,98)(12,101,16,97)(17,109,21,105)(18,108,22,112)(19,107,23,111)(20,106,24,110)(25,40,29,36)(26,39,30,35)(27,38,31,34)(28,37,32,33)(41,72,45,68)(42,71,46,67)(43,70,47,66)(44,69,48,65)(49,125,53,121)(50,124,54,128)(51,123,55,127)(52,122,56,126)(57,115,61,119)(58,114,62,118)(59,113,63,117)(60,120,64,116)(73,83,77,87)(74,82,78,86)(75,81,79,85)(76,88,80,84)>;
G:=Group( (1,99,61,51)(2,100,62,52)(3,101,63,53)(4,102,64,54)(5,103,57,55)(6,104,58,56)(7,97,59,49)(8,98,60,50)(9,92,122,118)(10,93,123,119)(11,94,124,120)(12,95,125,113)(13,96,126,114)(14,89,127,115)(15,90,128,116)(16,91,121,117)(17,30,78,68)(18,31,79,69)(19,32,80,70)(20,25,73,71)(21,26,74,72)(22,27,75,65)(23,28,76,66)(24,29,77,67)(33,107,47,84)(34,108,48,85)(35,109,41,86)(36,110,42,87)(37,111,43,88)(38,112,44,81)(39,105,45,82)(40,106,46,83), (1,73,61,20)(2,74,62,21)(3,75,63,22)(4,76,64,23)(5,77,57,24)(6,78,58,17)(7,79,59,18)(8,80,60,19)(9,82,122,105)(10,83,123,106)(11,84,124,107)(12,85,125,108)(13,86,126,109)(14,87,127,110)(15,88,128,111)(16,81,121,112)(25,51,71,99)(26,52,72,100)(27,53,65,101)(28,54,66,102)(29,55,67,103)(30,56,68,104)(31,49,69,97)(32,50,70,98)(33,94,47,120)(34,95,48,113)(35,96,41,114)(36,89,42,115)(37,90,43,116)(38,91,44,117)(39,92,45,118)(40,93,46,119), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,93,5,89)(2,92,6,96)(3,91,7,95)(4,90,8,94)(9,104,13,100)(10,103,14,99)(11,102,15,98)(12,101,16,97)(17,109,21,105)(18,108,22,112)(19,107,23,111)(20,106,24,110)(25,40,29,36)(26,39,30,35)(27,38,31,34)(28,37,32,33)(41,72,45,68)(42,71,46,67)(43,70,47,66)(44,69,48,65)(49,125,53,121)(50,124,54,128)(51,123,55,127)(52,122,56,126)(57,115,61,119)(58,114,62,118)(59,113,63,117)(60,120,64,116)(73,83,77,87)(74,82,78,86)(75,81,79,85)(76,88,80,84) );
G=PermutationGroup([[(1,99,61,51),(2,100,62,52),(3,101,63,53),(4,102,64,54),(5,103,57,55),(6,104,58,56),(7,97,59,49),(8,98,60,50),(9,92,122,118),(10,93,123,119),(11,94,124,120),(12,95,125,113),(13,96,126,114),(14,89,127,115),(15,90,128,116),(16,91,121,117),(17,30,78,68),(18,31,79,69),(19,32,80,70),(20,25,73,71),(21,26,74,72),(22,27,75,65),(23,28,76,66),(24,29,77,67),(33,107,47,84),(34,108,48,85),(35,109,41,86),(36,110,42,87),(37,111,43,88),(38,112,44,81),(39,105,45,82),(40,106,46,83)], [(1,73,61,20),(2,74,62,21),(3,75,63,22),(4,76,64,23),(5,77,57,24),(6,78,58,17),(7,79,59,18),(8,80,60,19),(9,82,122,105),(10,83,123,106),(11,84,124,107),(12,85,125,108),(13,86,126,109),(14,87,127,110),(15,88,128,111),(16,81,121,112),(25,51,71,99),(26,52,72,100),(27,53,65,101),(28,54,66,102),(29,55,67,103),(30,56,68,104),(31,49,69,97),(32,50,70,98),(33,94,47,120),(34,95,48,113),(35,96,41,114),(36,89,42,115),(37,90,43,116),(38,91,44,117),(39,92,45,118),(40,93,46,119)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,93,5,89),(2,92,6,96),(3,91,7,95),(4,90,8,94),(9,104,13,100),(10,103,14,99),(11,102,15,98),(12,101,16,97),(17,109,21,105),(18,108,22,112),(19,107,23,111),(20,106,24,110),(25,40,29,36),(26,39,30,35),(27,38,31,34),(28,37,32,33),(41,72,45,68),(42,71,46,67),(43,70,47,66),(44,69,48,65),(49,125,53,121),(50,124,54,128),(51,123,55,127),(52,122,56,126),(57,115,61,119),(58,114,62,118),(59,113,63,117),(60,120,64,116),(73,83,77,87),(74,82,78,86),(75,81,79,85),(76,88,80,84)]])
Matrix representation of Q8⋊1Q16 ►in GL4(𝔽17) generated by
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 |
13 | 9 | 0 | 0 |
4 | 4 | 0 | 0 |
0 | 0 | 1 | 10 |
0 | 0 | 10 | 16 |
6 | 6 | 0 | 0 |
14 | 0 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
7 | 7 | 0 | 0 |
5 | 10 | 0 | 0 |
0 | 0 | 13 | 6 |
0 | 0 | 6 | 4 |
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,0,16,0,0,1,0],[13,4,0,0,9,4,0,0,0,0,1,10,0,0,10,16],[6,14,0,0,6,0,0,0,0,0,16,0,0,0,0,16],[7,5,0,0,7,10,0,0,0,0,13,6,0,0,6,4] >;
Q8⋊1Q16 in GAP, Magma, Sage, TeX
Q_8\rtimes_1Q_{16}
% in TeX
G:=Group("Q8:1Q16");
// GroupNames label
G:=SmallGroup(128,402);
// by ID
G=gap.SmallGroup(128,402);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,224,141,288,422,352,1123,136,2804,718,172]);
// Polycyclic
G:=Group<a,b,c,d|a^4=c^8=1,b^2=a^2,d^2=c^4,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a^-1*b,d*c*d^-1=c^-1>;
// generators/relations
Export