Copied to
clipboard

G = Q81Q16order 128 = 27

The semidirect product of Q8 and Q16 acting via Q16/C8=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: Q81Q16, C8.34SD16, C42.221C23, (C8×Q8).4C2, C81C8.9C2, C4⋊C4.196D4, (C2×C8).342D4, C4.24(C2×Q16), C4.41(C4○D8), (C4×C8).52C22, (C2×Q8).148D4, Q8⋊Q8.6C2, C4⋊Q16.4C2, C4.80(C2×SD16), C4⋊Q8.44C22, C4⋊C8.175C22, C2.8(C4⋊SD16), C4.119(C8⋊C22), C2.7(D4.5D4), C4.10D8.10C2, C2.7(C8.18D4), (C4×Q8).263C22, C22.182(C4⋊D4), (C2×C4).6(C4○D4), (C2×C4).1256(C2×D4), SmallGroup(128,402)

Series: Derived Chief Lower central Upper central Jennings

C1C42 — Q81Q16
C1C2C22C2×C4C42C4×Q8C8×Q8 — Q81Q16
C1C22C42 — Q81Q16
C1C22C42 — Q81Q16
C1C22C22C42 — Q81Q16

Generators and relations for Q81Q16
 G = < a,b,c,d | a4=c8=1, b2=a2, d2=c4, bab-1=dad-1=a-1, ac=ca, bc=cb, dbd-1=a-1b, dcd-1=c-1 >

Subgroups: 160 in 78 conjugacy classes, 36 normal (24 characteristic)
C1, C2, C4, C4, C22, C8, C8, C2×C4, C2×C4, Q8, Q8, C42, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, Q16, C2×Q8, C2×Q8, C4×C8, C4×C8, Q8⋊C4, C4⋊C8, C4⋊C8, C4⋊C8, C4.Q8, C4×Q8, C4⋊Q8, C2×Q16, C4.10D8, C81C8, C8×Q8, Q8⋊Q8, C4⋊Q16, Q81Q16
Quotients: C1, C2, C22, D4, C23, SD16, Q16, C2×D4, C4○D4, C4⋊D4, C2×SD16, C2×Q16, C4○D8, C8⋊C22, C4⋊SD16, C8.18D4, D4.5D4, Q81Q16

Character table of Q81Q16

 class 12A2B2C4A4B4C4D4E4F4G4H4I4J4K8A8B8C8D8E8F8G8H8I8J8K8L8M8N
 size 1111222244444161622224444448888
ρ111111111111111111111111111111    trivial
ρ211111111-1-1-11-1-11-1-1-1-1111-1-11-11-11    linear of order 2
ρ31111111111111-11-1-1-1-1-1-1-1-1-1-11-11-1    linear of order 2
ρ411111111-1-1-11-1111111-1-1-111-1-1-1-1-1    linear of order 2
ρ511111111111111-1-1-1-1-1-1-1-1-1-1-1-11-11    linear of order 2
ρ611111111-1-1-11-1-1-11111-1-1-111-11111    linear of order 2
ρ71111111111111-1-11111111111-1-1-1-1    linear of order 2
ρ811111111-1-1-11-11-1-1-1-1-1111-1-111-11-1    linear of order 2
ρ922222-22-2000-2000-2-2-2-20002200000    orthogonal lifted from D4
ρ102222-22-222-2-2-220000000000000000    orthogonal lifted from D4
ρ112222-22-22-222-2-20000000000000000    orthogonal lifted from D4
ρ1222222-22-2000-20002222000-2-200000    orthogonal lifted from D4
ρ1322-2-2020-20-220000-222-22-2-22-220000    symplectic lifted from Q16, Schur index 2
ρ1422-2-2020-202-200002-2-222-2-2-2220000    symplectic lifted from Q16, Schur index 2
ρ1522-2-2020-202-20000-222-2-2222-2-20000    symplectic lifted from Q16, Schur index 2
ρ1622-2-2020-20-2200002-2-22-222-22-20000    symplectic lifted from Q16, Schur index 2
ρ1722-2-20-2022i000-2i002-2-22-2--2-22-2--20000    complex lifted from C4○D8
ρ1822-2-20-202-2i0002i00-222-2-2--2-2-22--20000    complex lifted from C4○D8
ρ192-22-2-20200000000-22-22000000-2--2--2-2    complex lifted from SD16
ρ202-22-2-202000000002-22-2000000--2--2-2-2    complex lifted from SD16
ρ212222-2-2-2-2000200000002i2i-2i00-2i0000    complex lifted from C4○D4
ρ222222-2-2-2-200020000000-2i-2i2i002i0000    complex lifted from C4○D4
ρ232-22-2-20200000000-22-22000000--2-2-2--2    complex lifted from SD16
ρ242-22-2-202000000002-22-2000000-2-2--2--2    complex lifted from SD16
ρ2522-2-20-2022i000-2i00-222-2--2-2--2-22-20000    complex lifted from C4○D8
ρ2622-2-20-202-2i0002i002-2-22--2-2--22-2-20000    complex lifted from C4○D8
ρ274-44-440-40000000000000000000000    orthogonal lifted from C8⋊C22
ρ284-4-44000000000002222-22-220000000000    symplectic lifted from D4.5D4, Schur index 2
ρ294-4-4400000000000-22-2222220000000000    symplectic lifted from D4.5D4, Schur index 2

Smallest permutation representation of Q81Q16
Regular action on 128 points
Generators in S128
(1 99 61 51)(2 100 62 52)(3 101 63 53)(4 102 64 54)(5 103 57 55)(6 104 58 56)(7 97 59 49)(8 98 60 50)(9 92 122 118)(10 93 123 119)(11 94 124 120)(12 95 125 113)(13 96 126 114)(14 89 127 115)(15 90 128 116)(16 91 121 117)(17 30 78 68)(18 31 79 69)(19 32 80 70)(20 25 73 71)(21 26 74 72)(22 27 75 65)(23 28 76 66)(24 29 77 67)(33 107 47 84)(34 108 48 85)(35 109 41 86)(36 110 42 87)(37 111 43 88)(38 112 44 81)(39 105 45 82)(40 106 46 83)
(1 73 61 20)(2 74 62 21)(3 75 63 22)(4 76 64 23)(5 77 57 24)(6 78 58 17)(7 79 59 18)(8 80 60 19)(9 82 122 105)(10 83 123 106)(11 84 124 107)(12 85 125 108)(13 86 126 109)(14 87 127 110)(15 88 128 111)(16 81 121 112)(25 51 71 99)(26 52 72 100)(27 53 65 101)(28 54 66 102)(29 55 67 103)(30 56 68 104)(31 49 69 97)(32 50 70 98)(33 94 47 120)(34 95 48 113)(35 96 41 114)(36 89 42 115)(37 90 43 116)(38 91 44 117)(39 92 45 118)(40 93 46 119)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 93 5 89)(2 92 6 96)(3 91 7 95)(4 90 8 94)(9 104 13 100)(10 103 14 99)(11 102 15 98)(12 101 16 97)(17 109 21 105)(18 108 22 112)(19 107 23 111)(20 106 24 110)(25 40 29 36)(26 39 30 35)(27 38 31 34)(28 37 32 33)(41 72 45 68)(42 71 46 67)(43 70 47 66)(44 69 48 65)(49 125 53 121)(50 124 54 128)(51 123 55 127)(52 122 56 126)(57 115 61 119)(58 114 62 118)(59 113 63 117)(60 120 64 116)(73 83 77 87)(74 82 78 86)(75 81 79 85)(76 88 80 84)

G:=sub<Sym(128)| (1,99,61,51)(2,100,62,52)(3,101,63,53)(4,102,64,54)(5,103,57,55)(6,104,58,56)(7,97,59,49)(8,98,60,50)(9,92,122,118)(10,93,123,119)(11,94,124,120)(12,95,125,113)(13,96,126,114)(14,89,127,115)(15,90,128,116)(16,91,121,117)(17,30,78,68)(18,31,79,69)(19,32,80,70)(20,25,73,71)(21,26,74,72)(22,27,75,65)(23,28,76,66)(24,29,77,67)(33,107,47,84)(34,108,48,85)(35,109,41,86)(36,110,42,87)(37,111,43,88)(38,112,44,81)(39,105,45,82)(40,106,46,83), (1,73,61,20)(2,74,62,21)(3,75,63,22)(4,76,64,23)(5,77,57,24)(6,78,58,17)(7,79,59,18)(8,80,60,19)(9,82,122,105)(10,83,123,106)(11,84,124,107)(12,85,125,108)(13,86,126,109)(14,87,127,110)(15,88,128,111)(16,81,121,112)(25,51,71,99)(26,52,72,100)(27,53,65,101)(28,54,66,102)(29,55,67,103)(30,56,68,104)(31,49,69,97)(32,50,70,98)(33,94,47,120)(34,95,48,113)(35,96,41,114)(36,89,42,115)(37,90,43,116)(38,91,44,117)(39,92,45,118)(40,93,46,119), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,93,5,89)(2,92,6,96)(3,91,7,95)(4,90,8,94)(9,104,13,100)(10,103,14,99)(11,102,15,98)(12,101,16,97)(17,109,21,105)(18,108,22,112)(19,107,23,111)(20,106,24,110)(25,40,29,36)(26,39,30,35)(27,38,31,34)(28,37,32,33)(41,72,45,68)(42,71,46,67)(43,70,47,66)(44,69,48,65)(49,125,53,121)(50,124,54,128)(51,123,55,127)(52,122,56,126)(57,115,61,119)(58,114,62,118)(59,113,63,117)(60,120,64,116)(73,83,77,87)(74,82,78,86)(75,81,79,85)(76,88,80,84)>;

G:=Group( (1,99,61,51)(2,100,62,52)(3,101,63,53)(4,102,64,54)(5,103,57,55)(6,104,58,56)(7,97,59,49)(8,98,60,50)(9,92,122,118)(10,93,123,119)(11,94,124,120)(12,95,125,113)(13,96,126,114)(14,89,127,115)(15,90,128,116)(16,91,121,117)(17,30,78,68)(18,31,79,69)(19,32,80,70)(20,25,73,71)(21,26,74,72)(22,27,75,65)(23,28,76,66)(24,29,77,67)(33,107,47,84)(34,108,48,85)(35,109,41,86)(36,110,42,87)(37,111,43,88)(38,112,44,81)(39,105,45,82)(40,106,46,83), (1,73,61,20)(2,74,62,21)(3,75,63,22)(4,76,64,23)(5,77,57,24)(6,78,58,17)(7,79,59,18)(8,80,60,19)(9,82,122,105)(10,83,123,106)(11,84,124,107)(12,85,125,108)(13,86,126,109)(14,87,127,110)(15,88,128,111)(16,81,121,112)(25,51,71,99)(26,52,72,100)(27,53,65,101)(28,54,66,102)(29,55,67,103)(30,56,68,104)(31,49,69,97)(32,50,70,98)(33,94,47,120)(34,95,48,113)(35,96,41,114)(36,89,42,115)(37,90,43,116)(38,91,44,117)(39,92,45,118)(40,93,46,119), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,93,5,89)(2,92,6,96)(3,91,7,95)(4,90,8,94)(9,104,13,100)(10,103,14,99)(11,102,15,98)(12,101,16,97)(17,109,21,105)(18,108,22,112)(19,107,23,111)(20,106,24,110)(25,40,29,36)(26,39,30,35)(27,38,31,34)(28,37,32,33)(41,72,45,68)(42,71,46,67)(43,70,47,66)(44,69,48,65)(49,125,53,121)(50,124,54,128)(51,123,55,127)(52,122,56,126)(57,115,61,119)(58,114,62,118)(59,113,63,117)(60,120,64,116)(73,83,77,87)(74,82,78,86)(75,81,79,85)(76,88,80,84) );

G=PermutationGroup([[(1,99,61,51),(2,100,62,52),(3,101,63,53),(4,102,64,54),(5,103,57,55),(6,104,58,56),(7,97,59,49),(8,98,60,50),(9,92,122,118),(10,93,123,119),(11,94,124,120),(12,95,125,113),(13,96,126,114),(14,89,127,115),(15,90,128,116),(16,91,121,117),(17,30,78,68),(18,31,79,69),(19,32,80,70),(20,25,73,71),(21,26,74,72),(22,27,75,65),(23,28,76,66),(24,29,77,67),(33,107,47,84),(34,108,48,85),(35,109,41,86),(36,110,42,87),(37,111,43,88),(38,112,44,81),(39,105,45,82),(40,106,46,83)], [(1,73,61,20),(2,74,62,21),(3,75,63,22),(4,76,64,23),(5,77,57,24),(6,78,58,17),(7,79,59,18),(8,80,60,19),(9,82,122,105),(10,83,123,106),(11,84,124,107),(12,85,125,108),(13,86,126,109),(14,87,127,110),(15,88,128,111),(16,81,121,112),(25,51,71,99),(26,52,72,100),(27,53,65,101),(28,54,66,102),(29,55,67,103),(30,56,68,104),(31,49,69,97),(32,50,70,98),(33,94,47,120),(34,95,48,113),(35,96,41,114),(36,89,42,115),(37,90,43,116),(38,91,44,117),(39,92,45,118),(40,93,46,119)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,93,5,89),(2,92,6,96),(3,91,7,95),(4,90,8,94),(9,104,13,100),(10,103,14,99),(11,102,15,98),(12,101,16,97),(17,109,21,105),(18,108,22,112),(19,107,23,111),(20,106,24,110),(25,40,29,36),(26,39,30,35),(27,38,31,34),(28,37,32,33),(41,72,45,68),(42,71,46,67),(43,70,47,66),(44,69,48,65),(49,125,53,121),(50,124,54,128),(51,123,55,127),(52,122,56,126),(57,115,61,119),(58,114,62,118),(59,113,63,117),(60,120,64,116),(73,83,77,87),(74,82,78,86),(75,81,79,85),(76,88,80,84)]])

Matrix representation of Q81Q16 in GL4(𝔽17) generated by

16000
01600
0001
00160
,
13900
4400
00110
001016
,
6600
14000
00160
00016
,
7700
51000
00136
0064
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,0,16,0,0,1,0],[13,4,0,0,9,4,0,0,0,0,1,10,0,0,10,16],[6,14,0,0,6,0,0,0,0,0,16,0,0,0,0,16],[7,5,0,0,7,10,0,0,0,0,13,6,0,0,6,4] >;

Q81Q16 in GAP, Magma, Sage, TeX

Q_8\rtimes_1Q_{16}
% in TeX

G:=Group("Q8:1Q16");
// GroupNames label

G:=SmallGroup(128,402);
// by ID

G=gap.SmallGroup(128,402);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,224,141,288,422,352,1123,136,2804,718,172]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^8=1,b^2=a^2,d^2=c^4,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a^-1*b,d*c*d^-1=c^-1>;
// generators/relations

Export

Character table of Q81Q16 in TeX

׿
×
𝔽