Copied to
clipboard

G = (C2×C4).19Q16order 128 = 27

16th non-split extension by C2×C4 of Q16 acting via Q16/C4=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: (C2×C4).19Q16, (C2×Q8).108D4, (C2×C4).40SD16, (C22×C4).318D4, C23.927(C2×D4), C22.60(C2×Q16), C429C4.15C2, C2.16(C4⋊SD16), C2.16(C42Q16), (C22×C8).85C22, C2.7(C4.SD16), C4.38(C422C2), C22.4Q16.25C2, (C2×C42).381C22, C22.104(C2×SD16), (C22×Q8).78C22, C22.248(C4⋊D4), C22.149(C8⋊C22), (C22×C4).1461C23, C2.7(C23.47D4), C4.27(C22.D4), C2.7(C23.48D4), C2.7(C23.11D4), C22.94(C4.4D4), C22.138(C8.C22), C22.7C42.13C2, C23.67C23.19C2, C2.10(C42.28C22), C22.117(C22.D4), (C2×C4).1060(C2×D4), (C2×C4).885(C4○D4), (C2×C4⋊C4).146C22, (C2×Q8⋊C4).16C2, SmallGroup(128,804)

Series: Derived Chief Lower central Upper central Jennings

C1C22×C4 — (C2×C4).19Q16
C1C2C4C2×C4C22×C4C2×C4⋊C4C2×Q8⋊C4 — (C2×C4).19Q16
C1C2C22×C4 — (C2×C4).19Q16
C1C23C2×C42 — (C2×C4).19Q16
C1C2C2C22×C4 — (C2×C4).19Q16

Generators and relations for (C2×C4).19Q16
 G = < a,b,c,d | a2=b4=c8=1, d2=ac4, ab=ba, ac=ca, ad=da, cbc-1=ab-1, dbd-1=b-1, dcd-1=ac-1 >

Subgroups: 248 in 119 conjugacy classes, 50 normal (28 characteristic)
C1, C2, C4, C4, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C42, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×Q8, C2×Q8, C2.C42, Q8⋊C4, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22×C8, C22×Q8, C22.7C42, C22.4Q16, C429C4, C23.67C23, C2×Q8⋊C4, (C2×C4).19Q16
Quotients: C1, C2, C22, D4, C23, SD16, Q16, C2×D4, C4○D4, C4⋊D4, C22.D4, C4.4D4, C422C2, C2×SD16, C2×Q16, C8⋊C22, C8.C22, C23.11D4, C4⋊SD16, C42Q16, C23.47D4, C23.48D4, C4.SD16, C42.28C22, (C2×C4).19Q16

Smallest permutation representation of (C2×C4).19Q16
Regular action on 128 points
Generators in S128
(1 33)(2 34)(3 35)(4 36)(5 37)(6 38)(7 39)(8 40)(9 121)(10 122)(11 123)(12 124)(13 125)(14 126)(15 127)(16 128)(17 31)(18 32)(19 25)(20 26)(21 27)(22 28)(23 29)(24 30)(41 98)(42 99)(43 100)(44 101)(45 102)(46 103)(47 104)(48 97)(49 64)(50 57)(51 58)(52 59)(53 60)(54 61)(55 62)(56 63)(65 74)(66 75)(67 76)(68 77)(69 78)(70 79)(71 80)(72 73)(81 95)(82 96)(83 89)(84 90)(85 91)(86 92)(87 93)(88 94)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)(111 113)(112 114)
(1 108 95 61)(2 55 96 119)(3 110 89 63)(4 49 90 113)(5 112 91 57)(6 51 92 115)(7 106 93 59)(8 53 94 117)(9 20 68 100)(10 44 69 27)(11 22 70 102)(12 46 71 29)(13 24 72 104)(14 48 65 31)(15 18 66 98)(16 42 67 25)(17 126 97 74)(19 128 99 76)(21 122 101 78)(23 124 103 80)(26 77 43 121)(28 79 45 123)(30 73 47 125)(32 75 41 127)(33 118 81 54)(34 62 82 109)(35 120 83 56)(36 64 84 111)(37 114 85 50)(38 58 86 105)(39 116 87 52)(40 60 88 107)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 20 37 30)(2 25 38 23)(3 18 39 28)(4 31 40 21)(5 24 33 26)(6 29 34 19)(7 22 35 32)(8 27 36 17)(9 114 125 108)(10 111 126 117)(11 120 127 106)(12 109 128 115)(13 118 121 112)(14 107 122 113)(15 116 123 110)(16 105 124 119)(41 93 102 83)(42 86 103 96)(43 91 104 81)(44 84 97 94)(45 89 98 87)(46 82 99 92)(47 95 100 85)(48 88 101 90)(49 65 60 78)(50 73 61 68)(51 71 62 76)(52 79 63 66)(53 69 64 74)(54 77 57 72)(55 67 58 80)(56 75 59 70)

G:=sub<Sym(128)| (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,121)(10,122)(11,123)(12,124)(13,125)(14,126)(15,127)(16,128)(17,31)(18,32)(19,25)(20,26)(21,27)(22,28)(23,29)(24,30)(41,98)(42,99)(43,100)(44,101)(45,102)(46,103)(47,104)(48,97)(49,64)(50,57)(51,58)(52,59)(53,60)(54,61)(55,62)(56,63)(65,74)(66,75)(67,76)(68,77)(69,78)(70,79)(71,80)(72,73)(81,95)(82,96)(83,89)(84,90)(85,91)(86,92)(87,93)(88,94)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(111,113)(112,114), (1,108,95,61)(2,55,96,119)(3,110,89,63)(4,49,90,113)(5,112,91,57)(6,51,92,115)(7,106,93,59)(8,53,94,117)(9,20,68,100)(10,44,69,27)(11,22,70,102)(12,46,71,29)(13,24,72,104)(14,48,65,31)(15,18,66,98)(16,42,67,25)(17,126,97,74)(19,128,99,76)(21,122,101,78)(23,124,103,80)(26,77,43,121)(28,79,45,123)(30,73,47,125)(32,75,41,127)(33,118,81,54)(34,62,82,109)(35,120,83,56)(36,64,84,111)(37,114,85,50)(38,58,86,105)(39,116,87,52)(40,60,88,107), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,20,37,30)(2,25,38,23)(3,18,39,28)(4,31,40,21)(5,24,33,26)(6,29,34,19)(7,22,35,32)(8,27,36,17)(9,114,125,108)(10,111,126,117)(11,120,127,106)(12,109,128,115)(13,118,121,112)(14,107,122,113)(15,116,123,110)(16,105,124,119)(41,93,102,83)(42,86,103,96)(43,91,104,81)(44,84,97,94)(45,89,98,87)(46,82,99,92)(47,95,100,85)(48,88,101,90)(49,65,60,78)(50,73,61,68)(51,71,62,76)(52,79,63,66)(53,69,64,74)(54,77,57,72)(55,67,58,80)(56,75,59,70)>;

G:=Group( (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,121)(10,122)(11,123)(12,124)(13,125)(14,126)(15,127)(16,128)(17,31)(18,32)(19,25)(20,26)(21,27)(22,28)(23,29)(24,30)(41,98)(42,99)(43,100)(44,101)(45,102)(46,103)(47,104)(48,97)(49,64)(50,57)(51,58)(52,59)(53,60)(54,61)(55,62)(56,63)(65,74)(66,75)(67,76)(68,77)(69,78)(70,79)(71,80)(72,73)(81,95)(82,96)(83,89)(84,90)(85,91)(86,92)(87,93)(88,94)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(111,113)(112,114), (1,108,95,61)(2,55,96,119)(3,110,89,63)(4,49,90,113)(5,112,91,57)(6,51,92,115)(7,106,93,59)(8,53,94,117)(9,20,68,100)(10,44,69,27)(11,22,70,102)(12,46,71,29)(13,24,72,104)(14,48,65,31)(15,18,66,98)(16,42,67,25)(17,126,97,74)(19,128,99,76)(21,122,101,78)(23,124,103,80)(26,77,43,121)(28,79,45,123)(30,73,47,125)(32,75,41,127)(33,118,81,54)(34,62,82,109)(35,120,83,56)(36,64,84,111)(37,114,85,50)(38,58,86,105)(39,116,87,52)(40,60,88,107), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,20,37,30)(2,25,38,23)(3,18,39,28)(4,31,40,21)(5,24,33,26)(6,29,34,19)(7,22,35,32)(8,27,36,17)(9,114,125,108)(10,111,126,117)(11,120,127,106)(12,109,128,115)(13,118,121,112)(14,107,122,113)(15,116,123,110)(16,105,124,119)(41,93,102,83)(42,86,103,96)(43,91,104,81)(44,84,97,94)(45,89,98,87)(46,82,99,92)(47,95,100,85)(48,88,101,90)(49,65,60,78)(50,73,61,68)(51,71,62,76)(52,79,63,66)(53,69,64,74)(54,77,57,72)(55,67,58,80)(56,75,59,70) );

G=PermutationGroup([[(1,33),(2,34),(3,35),(4,36),(5,37),(6,38),(7,39),(8,40),(9,121),(10,122),(11,123),(12,124),(13,125),(14,126),(15,127),(16,128),(17,31),(18,32),(19,25),(20,26),(21,27),(22,28),(23,29),(24,30),(41,98),(42,99),(43,100),(44,101),(45,102),(46,103),(47,104),(48,97),(49,64),(50,57),(51,58),(52,59),(53,60),(54,61),(55,62),(56,63),(65,74),(66,75),(67,76),(68,77),(69,78),(70,79),(71,80),(72,73),(81,95),(82,96),(83,89),(84,90),(85,91),(86,92),(87,93),(88,94),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120),(111,113),(112,114)], [(1,108,95,61),(2,55,96,119),(3,110,89,63),(4,49,90,113),(5,112,91,57),(6,51,92,115),(7,106,93,59),(8,53,94,117),(9,20,68,100),(10,44,69,27),(11,22,70,102),(12,46,71,29),(13,24,72,104),(14,48,65,31),(15,18,66,98),(16,42,67,25),(17,126,97,74),(19,128,99,76),(21,122,101,78),(23,124,103,80),(26,77,43,121),(28,79,45,123),(30,73,47,125),(32,75,41,127),(33,118,81,54),(34,62,82,109),(35,120,83,56),(36,64,84,111),(37,114,85,50),(38,58,86,105),(39,116,87,52),(40,60,88,107)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,20,37,30),(2,25,38,23),(3,18,39,28),(4,31,40,21),(5,24,33,26),(6,29,34,19),(7,22,35,32),(8,27,36,17),(9,114,125,108),(10,111,126,117),(11,120,127,106),(12,109,128,115),(13,118,121,112),(14,107,122,113),(15,116,123,110),(16,105,124,119),(41,93,102,83),(42,86,103,96),(43,91,104,81),(44,84,97,94),(45,89,98,87),(46,82,99,92),(47,95,100,85),(48,88,101,90),(49,65,60,78),(50,73,61,68),(51,71,62,76),(52,79,63,66),(53,69,64,74),(54,77,57,72),(55,67,58,80),(56,75,59,70)]])

32 conjugacy classes

class 1 2A···2G4A4B4C4D4E4F4G4H4I···4P8A···8H
order12···2444444444···48···8
size11···1222244448···84···4

32 irreducible representations

dim1111112222244
type++++++++-+-
imageC1C2C2C2C2C2D4D4SD16Q16C4○D4C8⋊C22C8.C22
kernel(C2×C4).19Q16C22.7C42C22.4Q16C429C4C23.67C23C2×Q8⋊C4C22×C4C2×Q8C2×C4C2×C4C2×C4C22C22
# reps11211222441011

Matrix representation of (C2×C4).19Q16 in GL6(𝔽17)

100000
010000
0016000
0001600
0000160
0000016
,
1660000
1110000
001900
00131600
0000115
0000116
,
010000
100000
004000
000400
000007
000057
,
010000
100000
00131500
000400
000006
000030

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,11,0,0,0,0,6,1,0,0,0,0,0,0,1,13,0,0,0,0,9,16,0,0,0,0,0,0,1,1,0,0,0,0,15,16],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,5,0,0,0,0,7,7],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,13,0,0,0,0,0,15,4,0,0,0,0,0,0,0,3,0,0,0,0,6,0] >;

(C2×C4).19Q16 in GAP, Magma, Sage, TeX

(C_2\times C_4)._{19}Q_{16}
% in TeX

G:=Group("(C2xC4).19Q16");
// GroupNames label

G:=SmallGroup(128,804);
// by ID

G=gap.SmallGroup(128,804);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,112,141,456,422,387,58,2028,1027,124]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^8=1,d^2=a*c^4,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=a*b^-1,d*b*d^-1=b^-1,d*c*d^-1=a*c^-1>;
// generators/relations

׿
×
𝔽