p-group, metabelian, nilpotent (class 3), monomial
Aliases: Q8⋊1D4, C4⋊3SD16, C42.17C22, C4⋊C8⋊8C2, (C4×Q8)⋊3C2, C4.30(C2×D4), (C2×C4).130D4, C4⋊1D4.3C2, D4⋊C4⋊10C2, C2.7(C2×SD16), (C2×SD16)⋊11C2, C4.40(C4○D4), C4⋊C4.57C22, (C2×C8).29C22, (C2×C4).88C23, C22.84(C2×D4), C2.12(C4⋊D4), C2.10(C8⋊C22), (C2×D4).12C22, (C2×Q8).50C22, SmallGroup(64,141)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C4⋊SD16
G = < a,b,c | a4=b8=c2=1, bab-1=cac=a-1, cbc=b3 >
Subgroups: 133 in 64 conjugacy classes, 29 normal (17 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, C42, C42, C4⋊C4, C4⋊C4, C2×C8, SD16, C2×D4, C2×D4, C2×Q8, D4⋊C4, C4⋊C8, C4×Q8, C4⋊1D4, C2×SD16, C4⋊SD16
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, C4○D4, C4⋊D4, C2×SD16, C8⋊C22, C4⋊SD16
Character table of C4⋊SD16
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | -2 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | -2 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ15 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ16 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ19 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
(1 26 18 11)(2 12 19 27)(3 28 20 13)(4 14 21 29)(5 30 22 15)(6 16 23 31)(7 32 24 9)(8 10 17 25)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(2 4)(3 7)(6 8)(9 28)(10 31)(11 26)(12 29)(13 32)(14 27)(15 30)(16 25)(17 23)(19 21)(20 24)
G:=sub<Sym(32)| (1,26,18,11)(2,12,19,27)(3,28,20,13)(4,14,21,29)(5,30,22,15)(6,16,23,31)(7,32,24,9)(8,10,17,25), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,4)(3,7)(6,8)(9,28)(10,31)(11,26)(12,29)(13,32)(14,27)(15,30)(16,25)(17,23)(19,21)(20,24)>;
G:=Group( (1,26,18,11)(2,12,19,27)(3,28,20,13)(4,14,21,29)(5,30,22,15)(6,16,23,31)(7,32,24,9)(8,10,17,25), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,4)(3,7)(6,8)(9,28)(10,31)(11,26)(12,29)(13,32)(14,27)(15,30)(16,25)(17,23)(19,21)(20,24) );
G=PermutationGroup([[(1,26,18,11),(2,12,19,27),(3,28,20,13),(4,14,21,29),(5,30,22,15),(6,16,23,31),(7,32,24,9),(8,10,17,25)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(2,4),(3,7),(6,8),(9,28),(10,31),(11,26),(12,29),(13,32),(14,27),(15,30),(16,25),(17,23),(19,21),(20,24)]])
C4⋊SD16 is a maximal subgroup of
C42.443D4 C42.444D4 C42.223D4 C42.450D4 C42.230D4 C42.233D4 C42.270D4 C42.274D4 C42.294D4 C42.302D4
Q8⋊D4p: Q8⋊D8 Q8⋊3D8 C8⋊13SD16 Q8⋊2D12 Q8⋊D12 Q8⋊D20 Q8⋊D28 ...
C4p⋊SD16: C8⋊14SD16 C8⋊SD16 C8⋊2SD16 Dic6⋊8D4 Dic6⋊9D4 Dic10⋊8D4 Dic10⋊9D4 Dic14⋊8D4 ...
(Cp×Q8)⋊D4: C42.212D4 C42.16C23 Dic3⋊5SD16 Dic5⋊5SD16 Dic7⋊5SD16 ...
C8⋊pD4⋊C2: D4⋊SD16 C42.266D4 C42.275D4 C42.408C23 C42.410C23 C42.295D4 C42.299D4 C4.2- 1+4 ...
C4⋊C4.D2p: C42.181C23 Q8⋊SD16 Q8⋊6SD16 C42.189C23 Q8.2SD16 Q8.2D8 C42.249C23 C42.253C23 ...
C4⋊SD16 is a maximal quotient of
C42.99D4 C42.118D4 C4⋊C4⋊7D4 (C2×C4)⋊5SD16 (C2×C4).19Q16
Q8⋊D4p: C8⋊13SD16 Q8⋊2D12 Q8⋊D20 Q8⋊D28 ...
C4p⋊SD16: C8⋊14SD16 C8⋊SD16 C8⋊2SD16 Dic6⋊8D4 Dic6⋊9D4 Dic10⋊8D4 Dic10⋊9D4 Dic14⋊8D4 ...
(Cp×Q8)⋊D4: (C2×C8)⋊20D4 Dic3⋊5SD16 Dic5⋊5SD16 Dic7⋊5SD16 ...
C4⋊C4.D2p: Q8⋊1Q16 C8.SD16 (C2×SD16)⋊15C4 C4.67(C4×D4) C42.30Q8 C4⋊C4.106D4 C2.(C8⋊3Q8) Dic6⋊2D4 ...
Matrix representation of C4⋊SD16 ►in GL4(𝔽17) generated by
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 13 | 8 |
0 | 0 | 0 | 4 |
12 | 12 | 0 | 0 |
5 | 12 | 0 | 0 |
0 | 0 | 1 | 15 |
0 | 0 | 1 | 16 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 1 | 16 |
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,13,0,0,0,8,4],[12,5,0,0,12,12,0,0,0,0,1,1,0,0,15,16],[1,0,0,0,0,16,0,0,0,0,1,1,0,0,0,16] >;
C4⋊SD16 in GAP, Magma, Sage, TeX
C_4\rtimes {\rm SD}_{16}
% in TeX
G:=Group("C4:SD16");
// GroupNames label
G:=SmallGroup(64,141);
// by ID
G=gap.SmallGroup(64,141);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,121,55,362,158,1444,376,88]);
// Polycyclic
G:=Group<a,b,c|a^4=b^8=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^3>;
// generators/relations
Export