p-group, metabelian, nilpotent (class 3), monomial
Aliases: Q8⋊1SD16, C8⋊14SD16, C42.217C23, (C8×Q8)⋊19C2, C8⋊2C8⋊22C2, C4⋊C4.192D4, (C2×C8).364D4, Q8⋊Q8⋊35C2, C4.65(C4○D8), C8⋊5D4.10C2, C2.9(C8⋊8D4), C4⋊SD16.6C2, (C2×Q8).146D4, C4.78(C2×SD16), C4.D8.7C2, C4⋊Q8.42C22, C4.10D8⋊22C2, C4⋊C8.173C22, (C4×C8).250C22, C2.6(C4⋊SD16), C4.115(C8⋊C22), C2.9(D4.3D4), C4⋊1D4.25C22, (C4×Q8).261C22, C22.178(C4⋊D4), (C2×C4).2(C4○D4), (C2×C4).1252(C2×D4), SmallGroup(128,398)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8⋊14SD16
G = < a,b,c | a8=b8=c2=1, bab-1=cac=a3, cbc=b3 >
Subgroups: 216 in 86 conjugacy classes, 36 normal (32 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, C42, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C2×D4, C2×Q8, C2×Q8, C4×C8, C4×C8, D4⋊C4, Q8⋊C4, C4⋊C8, C4⋊C8, C4.Q8, C4×Q8, C4⋊1D4, C4⋊Q8, C2×SD16, C4.D8, C4.10D8, C8⋊2C8, C8×Q8, C4⋊SD16, Q8⋊Q8, C8⋊5D4, C8⋊14SD16
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, C4○D4, C4⋊D4, C2×SD16, C4○D8, C8⋊C22, C4⋊SD16, C8⋊8D4, D4.3D4, C8⋊14SD16
Character table of C8⋊14SD16
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | 8M | 8N | |
size | 1 | 1 | 1 | 1 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 0 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ14 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 2i | -2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ15 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
ρ16 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | -√2 | √2 | -√2 | -√-2 | √-2 | √2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ18 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | -√-2 | √-2 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | √-2 | -√-2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | √-2 | -√-2 | √-2 | -√-2 | √-2 | -√-2 | -√-2 | -√-2 | √-2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ20 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | -√2 | √2 | -√2 | √-2 | -√-2 | √2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ21 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | √2 | -√2 | √2 | -√-2 | √-2 | -√2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ22 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | √2 | -√2 | √2 | √-2 | -√-2 | -√2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ23 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | √-2 | -√-2 | √-2 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | √-2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ24 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ25 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | -√-2 | √-2 | -√-2 | √-2 | -√-2 | √-2 | √-2 | √-2 | -√-2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ26 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ27 | 4 | -4 | 4 | -4 | 0 | 0 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ28 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√-2 | 2√-2 | -2√-2 | -2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D4.3D4 |
ρ29 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√-2 | -2√-2 | 2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D4.3D4 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 42 57 51 23 12 34 25)(2 45 58 54 24 15 35 28)(3 48 59 49 17 10 36 31)(4 43 60 52 18 13 37 26)(5 46 61 55 19 16 38 29)(6 41 62 50 20 11 39 32)(7 44 63 53 21 14 40 27)(8 47 64 56 22 9 33 30)
(2 4)(3 7)(6 8)(9 32)(10 27)(11 30)(12 25)(13 28)(14 31)(15 26)(16 29)(17 21)(18 24)(20 22)(33 62)(34 57)(35 60)(36 63)(37 58)(38 61)(39 64)(40 59)(41 56)(42 51)(43 54)(44 49)(45 52)(46 55)(47 50)(48 53)
G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,42,57,51,23,12,34,25)(2,45,58,54,24,15,35,28)(3,48,59,49,17,10,36,31)(4,43,60,52,18,13,37,26)(5,46,61,55,19,16,38,29)(6,41,62,50,20,11,39,32)(7,44,63,53,21,14,40,27)(8,47,64,56,22,9,33,30), (2,4)(3,7)(6,8)(9,32)(10,27)(11,30)(12,25)(13,28)(14,31)(15,26)(16,29)(17,21)(18,24)(20,22)(33,62)(34,57)(35,60)(36,63)(37,58)(38,61)(39,64)(40,59)(41,56)(42,51)(43,54)(44,49)(45,52)(46,55)(47,50)(48,53)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,42,57,51,23,12,34,25)(2,45,58,54,24,15,35,28)(3,48,59,49,17,10,36,31)(4,43,60,52,18,13,37,26)(5,46,61,55,19,16,38,29)(6,41,62,50,20,11,39,32)(7,44,63,53,21,14,40,27)(8,47,64,56,22,9,33,30), (2,4)(3,7)(6,8)(9,32)(10,27)(11,30)(12,25)(13,28)(14,31)(15,26)(16,29)(17,21)(18,24)(20,22)(33,62)(34,57)(35,60)(36,63)(37,58)(38,61)(39,64)(40,59)(41,56)(42,51)(43,54)(44,49)(45,52)(46,55)(47,50)(48,53) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,42,57,51,23,12,34,25),(2,45,58,54,24,15,35,28),(3,48,59,49,17,10,36,31),(4,43,60,52,18,13,37,26),(5,46,61,55,19,16,38,29),(6,41,62,50,20,11,39,32),(7,44,63,53,21,14,40,27),(8,47,64,56,22,9,33,30)], [(2,4),(3,7),(6,8),(9,32),(10,27),(11,30),(12,25),(13,28),(14,31),(15,26),(16,29),(17,21),(18,24),(20,22),(33,62),(34,57),(35,60),(36,63),(37,58),(38,61),(39,64),(40,59),(41,56),(42,51),(43,54),(44,49),(45,52),(46,55),(47,50),(48,53)]])
Matrix representation of C8⋊14SD16 ►in GL4(𝔽17) generated by
12 | 5 | 0 | 0 |
12 | 12 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 5 | 5 |
0 | 0 | 12 | 5 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 16 |
G:=sub<GL(4,GF(17))| [12,12,0,0,5,12,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,16,0,0,0,0,5,12,0,0,5,5],[1,0,0,0,0,16,0,0,0,0,1,0,0,0,0,16] >;
C8⋊14SD16 in GAP, Magma, Sage, TeX
C_8\rtimes_{14}{\rm SD}_{16}
% in TeX
G:=Group("C8:14SD16");
// GroupNames label
G:=SmallGroup(128,398);
// by ID
G=gap.SmallGroup(128,398);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,141,64,422,352,1123,136,2804,718,172]);
// Polycyclic
G:=Group<a,b,c|a^8=b^8=c^2=1,b*a*b^-1=c*a*c=a^3,c*b*c=b^3>;
// generators/relations
Export