p-group, metabelian, nilpotent (class 3), monomial
Aliases: (C2×C4)⋊5SD16, (C2×C8).159D4, C4.77C22≀C2, (C2×D4).116D4, (C2×Q8).106D4, C2.19(C8⋊D4), C2.19(C8⋊8D4), C23.917(C2×D4), (C22×C4).151D4, C22.4Q16⋊43C2, C2.14(C4⋊SD16), C4.73(C4.4D4), (C22×C8).78C22, C22.99(C2×SD16), C2.14(D4.D4), C2.19(D4.2D4), C22.113(C4○D8), (C2×C42).369C22, C2.18(Q8.D4), (C22×SD16).12C2, (C22×D4).87C22, (C22×Q8).72C22, C22.239(C4⋊D4), C22.141(C8⋊C22), (C22×C4).1451C23, C4.77(C22.D4), C23.67C23⋊10C2, C2.28(C23.10D4), C22.129(C8.C22), C24.3C22.16C2, (C2×C4⋊C8)⋊33C2, (C2×Q8⋊C4)⋊16C2, (C2×C4).1046(C2×D4), (C2×D4⋊C4).14C2, (C2×C4).882(C4○D4), (C2×C4⋊C4).132C22, SmallGroup(128,787)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for (C2×C4)⋊5SD16
G = < a,b,c,d | a2=b4=c8=d2=1, dbd=ab=ba, ac=ca, ad=da, cbc-1=b-1, dcd=c3 >
Subgroups: 384 in 162 conjugacy classes, 52 normal (44 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C24, C2.C42, D4⋊C4, Q8⋊C4, C4⋊C8, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C22×C8, C2×SD16, C22×D4, C22×Q8, C22.4Q16, C24.3C22, C23.67C23, C2×D4⋊C4, C2×Q8⋊C4, C2×C4⋊C8, C22×SD16, (C2×C4)⋊5SD16
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, C4○D4, C22≀C2, C4⋊D4, C22.D4, C4.4D4, C2×SD16, C4○D8, C8⋊C22, C8.C22, C23.10D4, C4⋊SD16, D4.D4, D4.2D4, Q8.D4, C8⋊8D4, C8⋊D4, (C2×C4)⋊5SD16
(1 21)(2 22)(3 23)(4 24)(5 17)(6 18)(7 19)(8 20)(9 49)(10 50)(11 51)(12 52)(13 53)(14 54)(15 55)(16 56)(25 39)(26 40)(27 33)(28 34)(29 35)(30 36)(31 37)(32 38)(41 62)(42 63)(43 64)(44 57)(45 58)(46 59)(47 60)(48 61)
(1 43 33 10)(2 11 34 44)(3 45 35 12)(4 13 36 46)(5 47 37 14)(6 15 38 48)(7 41 39 16)(8 9 40 42)(17 60 31 54)(18 55 32 61)(19 62 25 56)(20 49 26 63)(21 64 27 50)(22 51 28 57)(23 58 29 52)(24 53 30 59)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(2 4)(3 7)(6 8)(9 55)(10 50)(11 53)(12 56)(13 51)(14 54)(15 49)(16 52)(18 20)(19 23)(22 24)(25 29)(26 32)(28 30)(34 36)(35 39)(38 40)(41 58)(42 61)(43 64)(44 59)(45 62)(46 57)(47 60)(48 63)
G:=sub<Sym(64)| (1,21)(2,22)(3,23)(4,24)(5,17)(6,18)(7,19)(8,20)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,56)(25,39)(26,40)(27,33)(28,34)(29,35)(30,36)(31,37)(32,38)(41,62)(42,63)(43,64)(44,57)(45,58)(46,59)(47,60)(48,61), (1,43,33,10)(2,11,34,44)(3,45,35,12)(4,13,36,46)(5,47,37,14)(6,15,38,48)(7,41,39,16)(8,9,40,42)(17,60,31,54)(18,55,32,61)(19,62,25,56)(20,49,26,63)(21,64,27,50)(22,51,28,57)(23,58,29,52)(24,53,30,59), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,4)(3,7)(6,8)(9,55)(10,50)(11,53)(12,56)(13,51)(14,54)(15,49)(16,52)(18,20)(19,23)(22,24)(25,29)(26,32)(28,30)(34,36)(35,39)(38,40)(41,58)(42,61)(43,64)(44,59)(45,62)(46,57)(47,60)(48,63)>;
G:=Group( (1,21)(2,22)(3,23)(4,24)(5,17)(6,18)(7,19)(8,20)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,56)(25,39)(26,40)(27,33)(28,34)(29,35)(30,36)(31,37)(32,38)(41,62)(42,63)(43,64)(44,57)(45,58)(46,59)(47,60)(48,61), (1,43,33,10)(2,11,34,44)(3,45,35,12)(4,13,36,46)(5,47,37,14)(6,15,38,48)(7,41,39,16)(8,9,40,42)(17,60,31,54)(18,55,32,61)(19,62,25,56)(20,49,26,63)(21,64,27,50)(22,51,28,57)(23,58,29,52)(24,53,30,59), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,4)(3,7)(6,8)(9,55)(10,50)(11,53)(12,56)(13,51)(14,54)(15,49)(16,52)(18,20)(19,23)(22,24)(25,29)(26,32)(28,30)(34,36)(35,39)(38,40)(41,58)(42,61)(43,64)(44,59)(45,62)(46,57)(47,60)(48,63) );
G=PermutationGroup([[(1,21),(2,22),(3,23),(4,24),(5,17),(6,18),(7,19),(8,20),(9,49),(10,50),(11,51),(12,52),(13,53),(14,54),(15,55),(16,56),(25,39),(26,40),(27,33),(28,34),(29,35),(30,36),(31,37),(32,38),(41,62),(42,63),(43,64),(44,57),(45,58),(46,59),(47,60),(48,61)], [(1,43,33,10),(2,11,34,44),(3,45,35,12),(4,13,36,46),(5,47,37,14),(6,15,38,48),(7,41,39,16),(8,9,40,42),(17,60,31,54),(18,55,32,61),(19,62,25,56),(20,49,26,63),(21,64,27,50),(22,51,28,57),(23,58,29,52),(24,53,30,59)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(2,4),(3,7),(6,8),(9,55),(10,50),(11,53),(12,56),(13,51),(14,54),(15,49),(16,52),(18,20),(19,23),(22,24),(25,29),(26,32),(28,30),(34,36),(35,39),(38,40),(41,58),(42,61),(43,64),(44,59),(45,62),(46,57),(47,60),(48,63)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | ··· | 4N | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D4 | SD16 | C4○D4 | C4○D8 | C8⋊C22 | C8.C22 |
kernel | (C2×C4)⋊5SD16 | C22.4Q16 | C24.3C22 | C23.67C23 | C2×D4⋊C4 | C2×Q8⋊C4 | C2×C4⋊C8 | C22×SD16 | C2×C8 | C22×C4 | C2×D4 | C2×Q8 | C2×C4 | C2×C4 | C22 | C22 | C22 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 6 | 4 | 1 | 1 |
Matrix representation of (C2×C4)⋊5SD16 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
13 | 15 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
13 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 5 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
13 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[13,0,0,0,0,0,15,4,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,13,0,0,0,0,0,16,0,0,0,0,0,0,12,12,0,0,0,0,5,12,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,13,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16] >;
(C2×C4)⋊5SD16 in GAP, Magma, Sage, TeX
(C_2\times C_4)\rtimes_5{\rm SD}_{16}
% in TeX
G:=Group("(C2xC4):5SD16");
// GroupNames label
G:=SmallGroup(128,787);
// by ID
G=gap.SmallGroup(128,787);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,448,141,422,387,58,2019,1018,248,2804,1411,172,4037,2028,124]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^4=c^8=d^2=1,d*b*d=a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*c*d=c^3>;
// generators/relations