p-group, metabelian, nilpotent (class 3), monomial
Aliases: Q8⋊1D8, C8⋊13SD16, C42.219C23, (C8×Q8)⋊5C2, C8⋊1C8⋊5C2, C4.32(C2×D8), C4⋊C4.194D4, (C2×C8).340D4, C8⋊4D4.4C2, C4⋊SD16⋊34C2, C4.85(C4○D8), C4.D8⋊14C2, C2.7(C8⋊7D4), (C4×C8).50C22, (C2×Q8).147D4, C4.79(C2×SD16), C4⋊C8.174C22, C2.7(C4⋊SD16), C4.117(C8⋊C22), C2.7(D4.4D4), C4⋊1D4.27C22, (C4×Q8).262C22, C22.180(C4⋊D4), (C2×C4).4(C4○D4), (C2×C4).1254(C2×D4), SmallGroup(128,400)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8⋊13SD16
G = < a,b,c | a8=b8=c2=1, bab-1=cac=a-1, cbc=b3 >
Subgroups: 272 in 94 conjugacy classes, 36 normal (24 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, C42, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, D8, SD16, C2×D4, C2×Q8, C4×C8, C4×C8, D4⋊C4, C4⋊C8, C4⋊C8, C4⋊C8, C4×Q8, C4⋊1D4, C2×D8, C2×SD16, C4.D8, C8⋊1C8, C8×Q8, C4⋊SD16, C8⋊4D4, C8⋊13SD16
Quotients: C1, C2, C22, D4, C23, D8, SD16, C2×D4, C4○D4, C4⋊D4, C2×D8, C2×SD16, C4○D8, C8⋊C22, C4⋊SD16, C8⋊7D4, D4.4D4, C8⋊13SD16
Character table of C8⋊13SD16
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | 8M | 8N | |
size | 1 | 1 | 1 | 1 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 2 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 2 | 0 | 0 | -2 | -√2 | √2 | √2 | -√2 | √2 | -√2 | -√2 | √2 | -√2 | √2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | -2 | 0 | 0 | 2 | -√2 | √2 | √2 | -√2 | -√2 | √2 | √2 | √2 | -√2 | -√2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ15 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 2 | 0 | 0 | -2 | √2 | -√2 | -√2 | √2 | -√2 | √2 | √2 | -√2 | √2 | -√2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | -2 | 0 | 0 | 2 | √2 | -√2 | -√2 | √2 | √2 | -√2 | -√2 | -√2 | √2 | √2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ17 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 2i | -2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 2i | 0 | 0 | -2i | 0 | -√2 | √2 | √2 | -√2 | √-2 | -√-2 | √-2 | -√2 | √2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | -2i | 0 | 0 | 2i | 0 | √2 | -√2 | -√2 | √2 | √-2 | -√-2 | √-2 | √2 | -√2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
ρ23 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 2i | 0 | 0 | -2i | 0 | √2 | -√2 | -√2 | √2 | -√-2 | √-2 | -√-2 | √2 | -√2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ24 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ25 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | -2i | 0 | 0 | 2i | 0 | -√2 | √2 | √2 | -√2 | -√-2 | √-2 | -√-2 | -√2 | √2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ26 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ27 | 4 | -4 | 4 | -4 | 0 | 0 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ28 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | -2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4.4D4 |
ρ29 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | -2√2 | 2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4.4D4 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 44 57 53 22 12 36 31)(2 43 58 52 23 11 37 30)(3 42 59 51 24 10 38 29)(4 41 60 50 17 9 39 28)(5 48 61 49 18 16 40 27)(6 47 62 56 19 15 33 26)(7 46 63 55 20 14 34 25)(8 45 64 54 21 13 35 32)
(2 8)(3 7)(4 6)(9 26)(10 25)(11 32)(12 31)(13 30)(14 29)(15 28)(16 27)(17 19)(20 24)(21 23)(33 60)(34 59)(35 58)(36 57)(37 64)(38 63)(39 62)(40 61)(41 56)(42 55)(43 54)(44 53)(45 52)(46 51)(47 50)(48 49)
G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,44,57,53,22,12,36,31)(2,43,58,52,23,11,37,30)(3,42,59,51,24,10,38,29)(4,41,60,50,17,9,39,28)(5,48,61,49,18,16,40,27)(6,47,62,56,19,15,33,26)(7,46,63,55,20,14,34,25)(8,45,64,54,21,13,35,32), (2,8)(3,7)(4,6)(9,26)(10,25)(11,32)(12,31)(13,30)(14,29)(15,28)(16,27)(17,19)(20,24)(21,23)(33,60)(34,59)(35,58)(36,57)(37,64)(38,63)(39,62)(40,61)(41,56)(42,55)(43,54)(44,53)(45,52)(46,51)(47,50)(48,49)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,44,57,53,22,12,36,31)(2,43,58,52,23,11,37,30)(3,42,59,51,24,10,38,29)(4,41,60,50,17,9,39,28)(5,48,61,49,18,16,40,27)(6,47,62,56,19,15,33,26)(7,46,63,55,20,14,34,25)(8,45,64,54,21,13,35,32), (2,8)(3,7)(4,6)(9,26)(10,25)(11,32)(12,31)(13,30)(14,29)(15,28)(16,27)(17,19)(20,24)(21,23)(33,60)(34,59)(35,58)(36,57)(37,64)(38,63)(39,62)(40,61)(41,56)(42,55)(43,54)(44,53)(45,52)(46,51)(47,50)(48,49) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,44,57,53,22,12,36,31),(2,43,58,52,23,11,37,30),(3,42,59,51,24,10,38,29),(4,41,60,50,17,9,39,28),(5,48,61,49,18,16,40,27),(6,47,62,56,19,15,33,26),(7,46,63,55,20,14,34,25),(8,45,64,54,21,13,35,32)], [(2,8),(3,7),(4,6),(9,26),(10,25),(11,32),(12,31),(13,30),(14,29),(15,28),(16,27),(17,19),(20,24),(21,23),(33,60),(34,59),(35,58),(36,57),(37,64),(38,63),(39,62),(40,61),(41,56),(42,55),(43,54),(44,53),(45,52),(46,51),(47,50),(48,49)]])
Matrix representation of C8⋊13SD16 ►in GL4(𝔽17) generated by
0 | 6 | 0 | 0 |
14 | 6 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
1 | 16 | 0 | 0 |
0 | 0 | 7 | 10 |
0 | 0 | 12 | 0 |
1 | 0 | 0 | 0 |
1 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 1 | 16 |
G:=sub<GL(4,GF(17))| [0,14,0,0,6,6,0,0,0,0,1,0,0,0,0,1],[1,1,0,0,0,16,0,0,0,0,7,12,0,0,10,0],[1,1,0,0,0,16,0,0,0,0,1,1,0,0,0,16] >;
C8⋊13SD16 in GAP, Magma, Sage, TeX
C_8\rtimes_{13}{\rm SD}_{16}
% in TeX
G:=Group("C8:13SD16");
// GroupNames label
G:=SmallGroup(128,400);
// by ID
G=gap.SmallGroup(128,400);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,141,288,422,352,1123,136,2804,718,172]);
// Polycyclic
G:=Group<a,b,c|a^8=b^8=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^3>;
// generators/relations
Export