Extensions 1→N→G→Q→1 with N=C2 and Q=D4.D4

Direct product G=N×Q with N=C2 and Q=D4.D4
dρLabelID
C2×D4.D464C2xD4.D4128,1762


Non-split extensions G=N.Q with N=C2 and Q=D4.D4
extensionφ:Q→Aut NdρLabelID
C2.1(D4.D4) = C42.98D4central extension (φ=1)64C2.1(D4.D4)128,534
C2.2(D4.D4) = (C2×SD16)⋊14C4central extension (φ=1)64C2.2(D4.D4)128,609
C2.3(D4.D4) = C4.68(C4×D4)central extension (φ=1)128C2.3(D4.D4)128,659
C2.4(D4.D4) = C42.30Q8central extension (φ=1)128C2.4(D4.D4)128,680
C2.5(D4.D4) = C42.117D4central extension (φ=1)128C2.5(D4.D4)128,713
C2.6(D4.D4) = C811SD16central stem extension (φ=1)64C2.6(D4.D4)128,403
C2.7(D4.D4) = C810SD16central stem extension (φ=1)64C2.7(D4.D4)128,405
C2.8(D4.D4) = D4.1Q16central stem extension (φ=1)64C2.8(D4.D4)128,407
C2.9(D4.D4) = C83SD16central stem extension (φ=1)64C2.9(D4.D4)128,423
C2.10(D4.D4) = C84SD16central stem extension (φ=1)64C2.10(D4.D4)128,425
C2.11(D4.D4) = C8.8SD16central stem extension (φ=1)64C2.11(D4.D4)128,427
C2.12(D4.D4) = (C2×C4)⋊3SD16central stem extension (φ=1)64C2.12(D4.D4)128,745
C2.13(D4.D4) = C4⋊C4.95D4central stem extension (φ=1)128C2.13(D4.D4)128,775
C2.14(D4.D4) = (C2×C4)⋊5SD16central stem extension (φ=1)64C2.14(D4.D4)128,787
C2.15(D4.D4) = (C2×Q8).8Q8central stem extension (φ=1)128C2.15(D4.D4)128,798
C2.16(D4.D4) = (C2×C4).24D8central stem extension (φ=1)64C2.16(D4.D4)128,803
C2.17(D4.D4) = C2.(C83Q8)central stem extension (φ=1)128C2.17(D4.D4)128,816

׿
×
𝔽