p-group, metabelian, nilpotent (class 3), monomial
Aliases: D4.1D4, C4⋊2SD16, C42.18C22, C4⋊C8⋊9C2, C4⋊Q8⋊2C2, (C4×D4).6C2, C4.31(C2×D4), (C2×C4).131D4, C2.8(C2×SD16), Q8⋊C4⋊11C2, C4.41(C4○D4), C4⋊C4.58C22, (C2×C4).89C23, (C2×C8).30C22, (C2×SD16).3C2, C22.85(C2×D4), (C2×Q8).7C22, C2.13(C4⋊D4), (C2×D4).56C22, C2.9(C8.C22), SmallGroup(64,142)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4.D4
G = < a,b,c,d | a4=b2=c4=1, d2=a2, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=c-1 >
Subgroups: 109 in 60 conjugacy classes, 29 normal (17 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, Q8⋊C4, C4⋊C8, C4×D4, C4⋊Q8, C2×SD16, D4.D4
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, C4○D4, C4⋊D4, C2×SD16, C8.C22, D4.D4
Character table of D4.D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 8 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ15 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ16 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ19 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 4)(2 3)(5 8)(6 7)(9 12)(10 11)(13 16)(14 15)(17 19)(21 23)(25 27)(29 31)
(1 15 7 11)(2 16 8 12)(3 13 5 9)(4 14 6 10)(17 25 21 29)(18 26 22 30)(19 27 23 31)(20 28 24 32)
(1 31 3 29)(2 30 4 32)(5 25 7 27)(6 28 8 26)(9 17 11 19)(10 20 12 18)(13 21 15 23)(14 24 16 22)
G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,4)(2,3)(5,8)(6,7)(9,12)(10,11)(13,16)(14,15)(17,19)(21,23)(25,27)(29,31), (1,15,7,11)(2,16,8,12)(3,13,5,9)(4,14,6,10)(17,25,21,29)(18,26,22,30)(19,27,23,31)(20,28,24,32), (1,31,3,29)(2,30,4,32)(5,25,7,27)(6,28,8,26)(9,17,11,19)(10,20,12,18)(13,21,15,23)(14,24,16,22)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,4)(2,3)(5,8)(6,7)(9,12)(10,11)(13,16)(14,15)(17,19)(21,23)(25,27)(29,31), (1,15,7,11)(2,16,8,12)(3,13,5,9)(4,14,6,10)(17,25,21,29)(18,26,22,30)(19,27,23,31)(20,28,24,32), (1,31,3,29)(2,30,4,32)(5,25,7,27)(6,28,8,26)(9,17,11,19)(10,20,12,18)(13,21,15,23)(14,24,16,22) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,4),(2,3),(5,8),(6,7),(9,12),(10,11),(13,16),(14,15),(17,19),(21,23),(25,27),(29,31)], [(1,15,7,11),(2,16,8,12),(3,13,5,9),(4,14,6,10),(17,25,21,29),(18,26,22,30),(19,27,23,31),(20,28,24,32)], [(1,31,3,29),(2,30,4,32),(5,25,7,27),(6,28,8,26),(9,17,11,19),(10,20,12,18),(13,21,15,23),(14,24,16,22)]])
D4.D4 is a maximal subgroup of
C42.443D4 C42.211D4 C42.445D4 C42.222D4 C42.451D4 C42.228D4 C42.234D4 C42.264D4 C42.270D4 C42.272D4 C42.276D4 C42.294D4 C42.296D4 C42.300D4 C42.302D4
D4.D4p: D4.D8 D4.7D8 C8⋊10SD16 D4.2D8 D4.2D12 D4.2D20 D4.2D28 ...
C4p⋊SD16: C8⋊11SD16 C8⋊3SD16 C8⋊4SD16 C12⋊SD16 C12⋊5SD16 C20⋊SD16 C20⋊5SD16 C28⋊SD16 ...
(Cp×D4).D4: Q8⋊3SD16 D4.5SD16 C42.207C23 C42.211C23 Q8⋊4SD16 D4⋊4SD16 D4.3SD16 C42.250C23 ...
C4⋊C4.D2p: C42.19C23 C42.354C23 C42.357C23 C42.407C23 C42.411C23 C42.25C23 C42.27C23 Q8⋊7SD16 ...
D4.D4 is a maximal quotient of
C4p⋊SD16: C8⋊11SD16 C8⋊10SD16 C8⋊3SD16 C8⋊4SD16 C12⋊SD16 D4.2D12 C12⋊5SD16 C20⋊SD16 ...
(Cp×D4).D4: D4.1Q16 C8.8SD16 C42.98D4 (C2×SD16)⋊14C4 (C2×C4)⋊3SD16 (C2×C4)⋊5SD16 (C2×C4).24D8 Dic3⋊3SD16 ...
C4⋊C4.D2p: C4.68(C4×D4) C42.30Q8 C42.117D4 C4⋊C4.95D4 (C2×Q8).8Q8 C2.(C8⋊3Q8) Dic3⋊SD16 Dic5⋊SD16 ...
Matrix representation of D4.D4 ►in GL4(𝔽17) generated by
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 |
16 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
13 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 4 | 0 | 0 |
13 | 0 | 0 | 0 |
0 | 0 | 5 | 12 |
0 | 0 | 12 | 12 |
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,0,16,0,0,1,0],[16,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0],[13,0,0,0,0,4,0,0,0,0,1,0,0,0,0,1],[0,13,0,0,4,0,0,0,0,0,5,12,0,0,12,12] >;
D4.D4 in GAP, Magma, Sage, TeX
D_4.D_4
% in TeX
G:=Group("D4.D4");
// GroupNames label
G:=SmallGroup(64,142);
// by ID
G=gap.SmallGroup(64,142);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,192,121,55,362,1444,376,88]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^4=1,d^2=a^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=c^-1>;
// generators/relations
Export