direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×D4.D4, C42.206D4, C42.315C23, D4.1(C2×D4), C4⋊3(C2×SD16), C4⋊C8⋊72C22, (C2×C4)⋊13SD16, C4⋊Q8⋊52C22, (C2×D4).214D4, C4.61(C22×D4), C4.64(C4⋊D4), C4⋊C4.371C23, (C2×C8).303C23, (C2×C4).234C24, (C22×C4).790D4, C23.853(C2×D4), (C2×Q8).31C23, C2.7(C22×SD16), Q8⋊C4⋊76C22, (C4×D4).308C22, (C2×D4).384C23, C22.82(C2×SD16), (C22×C8).337C22, (C2×C42).803C22, (C22×SD16).13C2, C22.494(C22×D4), C22.166(C4⋊D4), (C22×C4).1524C23, (C2×SD16).131C22, (C22×D4).566C22, (C22×Q8).267C22, C22.101(C8.C22), (C2×C4⋊C8)⋊35C2, (C2×C4⋊Q8)⋊29C2, (C2×C4×D4).79C2, C4.144(C2×C4○D4), C2.52(C2×C4⋊D4), (C2×Q8⋊C4)⋊37C2, (C2×C4).1415(C2×D4), C2.12(C2×C8.C22), (C2×C4).901(C4○D4), (C2×C4⋊C4).915C22, SmallGroup(128,1762)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×D4.D4
G = < a,b,c,d,e | a2=b4=c2=d4=1, e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe-1=b-1, bd=db, cd=dc, ece-1=bc, ede-1=d-1 >
Subgroups: 524 in 272 conjugacy classes, 116 normal (20 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C24, Q8⋊C4, C4⋊C8, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4×D4, C4×D4, C4⋊Q8, C4⋊Q8, C22×C8, C2×SD16, C2×SD16, C23×C4, C22×D4, C22×Q8, C2×Q8⋊C4, C2×C4⋊C8, D4.D4, C2×C4×D4, C2×C4⋊Q8, C22×SD16, C2×D4.D4
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, C4○D4, C24, C4⋊D4, C2×SD16, C8.C22, C22×D4, C2×C4○D4, D4.D4, C2×C4⋊D4, C22×SD16, C2×C8.C22, C2×D4.D4
(1 13)(2 14)(3 15)(4 16)(5 11)(6 12)(7 9)(8 10)(17 31)(18 32)(19 29)(20 30)(21 27)(22 28)(23 25)(24 26)(33 47)(34 48)(35 45)(36 46)(37 43)(38 44)(39 41)(40 42)(49 63)(50 64)(51 61)(52 62)(53 59)(54 60)(55 57)(56 58)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 6)(2 5)(3 8)(4 7)(9 16)(10 15)(11 14)(12 13)(17 24)(18 23)(19 22)(20 21)(25 32)(26 31)(27 30)(28 29)(33 39)(34 38)(35 37)(36 40)(41 47)(42 46)(43 45)(44 48)(49 55)(50 54)(51 53)(52 56)(57 63)(58 62)(59 61)(60 64)
(1 31 7 27)(2 32 8 28)(3 29 5 25)(4 30 6 26)(9 21 13 17)(10 22 14 18)(11 23 15 19)(12 24 16 20)(33 57 37 61)(34 58 38 62)(35 59 39 63)(36 60 40 64)(41 49 45 53)(42 50 46 54)(43 51 47 55)(44 52 48 56)
(1 55 3 53)(2 54 4 56)(5 49 7 51)(6 52 8 50)(9 61 11 63)(10 64 12 62)(13 57 15 59)(14 60 16 58)(17 33 19 35)(18 36 20 34)(21 37 23 39)(22 40 24 38)(25 41 27 43)(26 44 28 42)(29 45 31 47)(30 48 32 46)
G:=sub<Sym(64)| (1,13)(2,14)(3,15)(4,16)(5,11)(6,12)(7,9)(8,10)(17,31)(18,32)(19,29)(20,30)(21,27)(22,28)(23,25)(24,26)(33,47)(34,48)(35,45)(36,46)(37,43)(38,44)(39,41)(40,42)(49,63)(50,64)(51,61)(52,62)(53,59)(54,60)(55,57)(56,58), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,6)(2,5)(3,8)(4,7)(9,16)(10,15)(11,14)(12,13)(17,24)(18,23)(19,22)(20,21)(25,32)(26,31)(27,30)(28,29)(33,39)(34,38)(35,37)(36,40)(41,47)(42,46)(43,45)(44,48)(49,55)(50,54)(51,53)(52,56)(57,63)(58,62)(59,61)(60,64), (1,31,7,27)(2,32,8,28)(3,29,5,25)(4,30,6,26)(9,21,13,17)(10,22,14,18)(11,23,15,19)(12,24,16,20)(33,57,37,61)(34,58,38,62)(35,59,39,63)(36,60,40,64)(41,49,45,53)(42,50,46,54)(43,51,47,55)(44,52,48,56), (1,55,3,53)(2,54,4,56)(5,49,7,51)(6,52,8,50)(9,61,11,63)(10,64,12,62)(13,57,15,59)(14,60,16,58)(17,33,19,35)(18,36,20,34)(21,37,23,39)(22,40,24,38)(25,41,27,43)(26,44,28,42)(29,45,31,47)(30,48,32,46)>;
G:=Group( (1,13)(2,14)(3,15)(4,16)(5,11)(6,12)(7,9)(8,10)(17,31)(18,32)(19,29)(20,30)(21,27)(22,28)(23,25)(24,26)(33,47)(34,48)(35,45)(36,46)(37,43)(38,44)(39,41)(40,42)(49,63)(50,64)(51,61)(52,62)(53,59)(54,60)(55,57)(56,58), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,6)(2,5)(3,8)(4,7)(9,16)(10,15)(11,14)(12,13)(17,24)(18,23)(19,22)(20,21)(25,32)(26,31)(27,30)(28,29)(33,39)(34,38)(35,37)(36,40)(41,47)(42,46)(43,45)(44,48)(49,55)(50,54)(51,53)(52,56)(57,63)(58,62)(59,61)(60,64), (1,31,7,27)(2,32,8,28)(3,29,5,25)(4,30,6,26)(9,21,13,17)(10,22,14,18)(11,23,15,19)(12,24,16,20)(33,57,37,61)(34,58,38,62)(35,59,39,63)(36,60,40,64)(41,49,45,53)(42,50,46,54)(43,51,47,55)(44,52,48,56), (1,55,3,53)(2,54,4,56)(5,49,7,51)(6,52,8,50)(9,61,11,63)(10,64,12,62)(13,57,15,59)(14,60,16,58)(17,33,19,35)(18,36,20,34)(21,37,23,39)(22,40,24,38)(25,41,27,43)(26,44,28,42)(29,45,31,47)(30,48,32,46) );
G=PermutationGroup([[(1,13),(2,14),(3,15),(4,16),(5,11),(6,12),(7,9),(8,10),(17,31),(18,32),(19,29),(20,30),(21,27),(22,28),(23,25),(24,26),(33,47),(34,48),(35,45),(36,46),(37,43),(38,44),(39,41),(40,42),(49,63),(50,64),(51,61),(52,62),(53,59),(54,60),(55,57),(56,58)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,6),(2,5),(3,8),(4,7),(9,16),(10,15),(11,14),(12,13),(17,24),(18,23),(19,22),(20,21),(25,32),(26,31),(27,30),(28,29),(33,39),(34,38),(35,37),(36,40),(41,47),(42,46),(43,45),(44,48),(49,55),(50,54),(51,53),(52,56),(57,63),(58,62),(59,61),(60,64)], [(1,31,7,27),(2,32,8,28),(3,29,5,25),(4,30,6,26),(9,21,13,17),(10,22,14,18),(11,23,15,19),(12,24,16,20),(33,57,37,61),(34,58,38,62),(35,59,39,63),(36,60,40,64),(41,49,45,53),(42,50,46,54),(43,51,47,55),(44,52,48,56)], [(1,55,3,53),(2,54,4,56),(5,49,7,51),(6,52,8,50),(9,61,11,63),(10,64,12,62),(13,57,15,59),(14,60,16,58),(17,33,19,35),(18,36,20,34),(21,37,23,39),(22,40,24,38),(25,41,27,43),(26,44,28,42),(29,45,31,47),(30,48,32,46)]])
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | ··· | 4H | 4I | ··· | 4N | 4O | 4P | 4Q | 4R | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | SD16 | C4○D4 | C8.C22 |
kernel | C2×D4.D4 | C2×Q8⋊C4 | C2×C4⋊C8 | D4.D4 | C2×C4×D4 | C2×C4⋊Q8 | C22×SD16 | C42 | C22×C4 | C2×D4 | C2×C4 | C2×C4 | C22 |
# reps | 1 | 2 | 1 | 8 | 1 | 1 | 2 | 2 | 2 | 4 | 8 | 4 | 2 |
Matrix representation of C2×D4.D4 ►in GL5(𝔽17)
16 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 16 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 5 | 12 | 0 | 0 |
0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16],[1,0,0,0,0,0,0,16,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1],[16,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,16],[16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,1,0],[1,0,0,0,0,0,5,12,0,0,0,12,12,0,0,0,0,0,16,0,0,0,0,0,1] >;
C2×D4.D4 in GAP, Magma, Sage, TeX
C_2\times D_4.D_4
% in TeX
G:=Group("C2xD4.D4");
// GroupNames label
G:=SmallGroup(128,1762);
// by ID
G=gap.SmallGroup(128,1762);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,120,758,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^4=1,e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e^-1=b^-1,b*d=d*b,c*d=d*c,e*c*e^-1=b*c,e*d*e^-1=d^-1>;
// generators/relations