p-group, metabelian, nilpotent (class 3), monomial
Aliases: D4.1Q16, C8.26SD16, C42.226C23, C8⋊1C8⋊7C2, C8⋊2Q8⋊5C2, (C8×D4).6C2, C4⋊C4.201D4, (C2×C8).345D4, C4.25(C2×Q16), (C2×D4).191D4, C4.42(C4○D8), (C4×C8).55C22, D4⋊2Q8.8C2, C4.59(C2×SD16), C4⋊Q8.49C22, C4⋊C8.178C22, C4.6Q16⋊15C2, C2.8(D4.D4), C2.8(D4.4D4), C2.8(C8.18D4), (C4×D4).279C22, C4.114(C8.C22), C22.187(C4⋊D4), (C2×C4).11(C4○D4), (C2×C4).1261(C2×D4), SmallGroup(128,407)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4.1Q16
G = < a,b,c,d | a4=b2=c8=1, d2=a2c4, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=c-1 >
Subgroups: 176 in 80 conjugacy classes, 36 normal (24 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C2×D4, C2×Q8, C4×C8, C22⋊C8, D4⋊C4, C4⋊C8, C4⋊C8, C4.Q8, C2.D8, C4×D4, C4⋊Q8, C22×C8, C4.6Q16, C8⋊1C8, C8×D4, D4⋊2Q8, C8⋊2Q8, D4.1Q16
Quotients: C1, C2, C22, D4, C23, SD16, Q16, C2×D4, C4○D4, C4⋊D4, C2×SD16, C2×Q16, C4○D8, C8.C22, D4.D4, C8.18D4, D4.4D4, D4.1Q16
Character table of D4.1Q16
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | 8M | 8N | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -√2 | √2 | √2 | -√2 | √2 | -√2 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ14 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | √2 | -√2 | -√2 | -√2 | √2 | √2 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ15 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | √2 | -√2 | -√2 | √2 | -√2 | √2 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ16 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | -√2 | √2 | √2 | √2 | -√2 | -√2 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ17 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | -2i | 0 | 2i | 0 | 0 | √2 | -√2 | -√2 | √2 | -√-2 | √-2 | -√-2 | √2 | -√2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
ρ22 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 2i | -2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | 2i | 0 | -2i | 0 | 0 | -√2 | √2 | √2 | -√2 | -√-2 | √-2 | -√-2 | -√2 | √2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ24 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | 2i | 0 | -2i | 0 | 0 | √2 | -√2 | -√2 | √2 | √-2 | -√-2 | √-2 | √2 | -√2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ25 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ26 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | -2i | 0 | 2i | 0 | 0 | -√2 | √2 | √2 | -√2 | √-2 | -√-2 | √-2 | -√2 | √2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ27 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | -2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4.4D4 |
ρ28 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | -2√2 | 2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4.4D4 |
ρ29 | 4 | -4 | 4 | -4 | 0 | 0 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
(1 35 49 43)(2 36 50 44)(3 37 51 45)(4 38 52 46)(5 39 53 47)(6 40 54 48)(7 33 55 41)(8 34 56 42)(9 31 19 60)(10 32 20 61)(11 25 21 62)(12 26 22 63)(13 27 23 64)(14 28 24 57)(15 29 17 58)(16 30 18 59)
(1 47)(2 48)(3 41)(4 42)(5 43)(6 44)(7 45)(8 46)(9 23)(10 24)(11 17)(12 18)(13 19)(14 20)(15 21)(16 22)(25 29)(26 30)(27 31)(28 32)(33 51)(34 52)(35 53)(36 54)(37 55)(38 56)(39 49)(40 50)(57 61)(58 62)(59 63)(60 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 12 53 18)(2 11 54 17)(3 10 55 24)(4 9 56 23)(5 16 49 22)(6 15 50 21)(7 14 51 20)(8 13 52 19)(25 40 58 44)(26 39 59 43)(27 38 60 42)(28 37 61 41)(29 36 62 48)(30 35 63 47)(31 34 64 46)(32 33 57 45)
G:=sub<Sym(64)| (1,35,49,43)(2,36,50,44)(3,37,51,45)(4,38,52,46)(5,39,53,47)(6,40,54,48)(7,33,55,41)(8,34,56,42)(9,31,19,60)(10,32,20,61)(11,25,21,62)(12,26,22,63)(13,27,23,64)(14,28,24,57)(15,29,17,58)(16,30,18,59), (1,47)(2,48)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22)(25,29)(26,30)(27,31)(28,32)(33,51)(34,52)(35,53)(36,54)(37,55)(38,56)(39,49)(40,50)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,12,53,18)(2,11,54,17)(3,10,55,24)(4,9,56,23)(5,16,49,22)(6,15,50,21)(7,14,51,20)(8,13,52,19)(25,40,58,44)(26,39,59,43)(27,38,60,42)(28,37,61,41)(29,36,62,48)(30,35,63,47)(31,34,64,46)(32,33,57,45)>;
G:=Group( (1,35,49,43)(2,36,50,44)(3,37,51,45)(4,38,52,46)(5,39,53,47)(6,40,54,48)(7,33,55,41)(8,34,56,42)(9,31,19,60)(10,32,20,61)(11,25,21,62)(12,26,22,63)(13,27,23,64)(14,28,24,57)(15,29,17,58)(16,30,18,59), (1,47)(2,48)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22)(25,29)(26,30)(27,31)(28,32)(33,51)(34,52)(35,53)(36,54)(37,55)(38,56)(39,49)(40,50)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,12,53,18)(2,11,54,17)(3,10,55,24)(4,9,56,23)(5,16,49,22)(6,15,50,21)(7,14,51,20)(8,13,52,19)(25,40,58,44)(26,39,59,43)(27,38,60,42)(28,37,61,41)(29,36,62,48)(30,35,63,47)(31,34,64,46)(32,33,57,45) );
G=PermutationGroup([[(1,35,49,43),(2,36,50,44),(3,37,51,45),(4,38,52,46),(5,39,53,47),(6,40,54,48),(7,33,55,41),(8,34,56,42),(9,31,19,60),(10,32,20,61),(11,25,21,62),(12,26,22,63),(13,27,23,64),(14,28,24,57),(15,29,17,58),(16,30,18,59)], [(1,47),(2,48),(3,41),(4,42),(5,43),(6,44),(7,45),(8,46),(9,23),(10,24),(11,17),(12,18),(13,19),(14,20),(15,21),(16,22),(25,29),(26,30),(27,31),(28,32),(33,51),(34,52),(35,53),(36,54),(37,55),(38,56),(39,49),(40,50),(57,61),(58,62),(59,63),(60,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,12,53,18),(2,11,54,17),(3,10,55,24),(4,9,56,23),(5,16,49,22),(6,15,50,21),(7,14,51,20),(8,13,52,19),(25,40,58,44),(26,39,59,43),(27,38,60,42),(28,37,61,41),(29,36,62,48),(30,35,63,47),(31,34,64,46),(32,33,57,45)]])
Matrix representation of D4.1Q16 ►in GL4(𝔽17) generated by
1 | 15 | 0 | 0 |
1 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 15 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 3 | 14 |
0 | 0 | 3 | 3 |
0 | 7 | 0 | 0 |
12 | 0 | 0 | 0 |
0 | 0 | 7 | 1 |
0 | 0 | 1 | 10 |
G:=sub<GL(4,GF(17))| [1,1,0,0,15,16,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,15,16,0,0,0,0,16,0,0,0,0,16],[16,0,0,0,0,16,0,0,0,0,3,3,0,0,14,3],[0,12,0,0,7,0,0,0,0,0,7,1,0,0,1,10] >;
D4.1Q16 in GAP, Magma, Sage, TeX
D_4._1Q_{16}
% in TeX
G:=Group("D4.1Q16");
// GroupNames label
G:=SmallGroup(128,407);
// by ID
G=gap.SmallGroup(128,407);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,672,141,288,422,1123,136,2804,718,172]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^8=1,d^2=a^2*c^4,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=c^-1>;
// generators/relations
Export