p-group, metabelian, nilpotent (class 3), monomial
Aliases: C8⋊11SD16, D4.1SD16, C42.222C23, C8⋊2C8⋊23C2, C4⋊C4.197D4, C8⋊3Q8⋊15C2, (C8×D4).13C2, (C2×C8).365D4, (C2×D4).189D4, C4.66(C4○D8), D4⋊2Q8.7C2, C4.57(C2×SD16), C4⋊Q8.45C22, C4.10D8⋊23C2, C2.10(C8⋊8D4), C4⋊C8.176C22, (C4×C8).251C22, C4.6Q16⋊14C2, D4.D4.6C2, C2.6(D4.D4), (C4×D4).277C22, C2.10(D4.3D4), C4.110(C8.C22), C22.183(C4⋊D4), (C2×C4).7(C4○D4), (C2×C4).1257(C2×D4), SmallGroup(128,403)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8⋊11SD16
G = < a,b,c | a8=b8=c2=1, bab-1=a3, ac=ca, cbc=b3 >
Subgroups: 184 in 83 conjugacy classes, 36 normal (32 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, C4×C8, C22⋊C8, D4⋊C4, Q8⋊C4, C4⋊C8, C4.Q8, C4×D4, C4⋊Q8, C22×C8, C2×SD16, C4.10D8, C4.6Q16, C8⋊2C8, C8×D4, D4.D4, D4⋊2Q8, C8⋊3Q8, C8⋊11SD16
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, C4○D4, C4⋊D4, C2×SD16, C4○D8, C8.C22, D4.D4, C8⋊8D4, D4.3D4, C8⋊11SD16
Character table of C8⋊11SD16
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | 8M | 8N | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ14 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 2i | -2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ15 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | -2i | 0 | 2i | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | -√2 | √2 | -√2 | -√-2 | √-2 | √2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | 2i | 0 | -2i | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | -√2 | √2 | -√2 | √-2 | -√-2 | √2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ17 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | √-2 | -√-2 | -√-2 | √-2 | -√-2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ19 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | √-2 | √-2 | √-2 | -√-2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
ρ22 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | -√-2 | √-2 | √-2 | -√-2 | √-2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ23 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ24 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | -2i | 0 | 2i | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | √2 | -√2 | √2 | √-2 | -√-2 | -√2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ25 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | 2i | 0 | -2i | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | √2 | -√2 | √2 | -√-2 | √-2 | -√2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ26 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | -√-2 | √-2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ27 | 4 | -4 | 4 | -4 | 0 | 0 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ28 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√-2 | 2√-2 | -2√-2 | -2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D4.3D4 |
ρ29 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√-2 | -2√-2 | 2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D4.3D4 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 12 39 20 45 32 49 58)(2 15 40 23 46 27 50 61)(3 10 33 18 47 30 51 64)(4 13 34 21 48 25 52 59)(5 16 35 24 41 28 53 62)(6 11 36 19 42 31 54 57)(7 14 37 22 43 26 55 60)(8 9 38 17 44 29 56 63)
(9 17)(10 18)(11 19)(12 20)(13 21)(14 22)(15 23)(16 24)(25 59)(26 60)(27 61)(28 62)(29 63)(30 64)(31 57)(32 58)(33 51)(34 52)(35 53)(36 54)(37 55)(38 56)(39 49)(40 50)
G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,12,39,20,45,32,49,58)(2,15,40,23,46,27,50,61)(3,10,33,18,47,30,51,64)(4,13,34,21,48,25,52,59)(5,16,35,24,41,28,53,62)(6,11,36,19,42,31,54,57)(7,14,37,22,43,26,55,60)(8,9,38,17,44,29,56,63), (9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(25,59)(26,60)(27,61)(28,62)(29,63)(30,64)(31,57)(32,58)(33,51)(34,52)(35,53)(36,54)(37,55)(38,56)(39,49)(40,50)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,12,39,20,45,32,49,58)(2,15,40,23,46,27,50,61)(3,10,33,18,47,30,51,64)(4,13,34,21,48,25,52,59)(5,16,35,24,41,28,53,62)(6,11,36,19,42,31,54,57)(7,14,37,22,43,26,55,60)(8,9,38,17,44,29,56,63), (9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(25,59)(26,60)(27,61)(28,62)(29,63)(30,64)(31,57)(32,58)(33,51)(34,52)(35,53)(36,54)(37,55)(38,56)(39,49)(40,50) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,12,39,20,45,32,49,58),(2,15,40,23,46,27,50,61),(3,10,33,18,47,30,51,64),(4,13,34,21,48,25,52,59),(5,16,35,24,41,28,53,62),(6,11,36,19,42,31,54,57),(7,14,37,22,43,26,55,60),(8,9,38,17,44,29,56,63)], [(9,17),(10,18),(11,19),(12,20),(13,21),(14,22),(15,23),(16,24),(25,59),(26,60),(27,61),(28,62),(29,63),(30,64),(31,57),(32,58),(33,51),(34,52),(35,53),(36,54),(37,55),(38,56),(39,49),(40,50)]])
Matrix representation of C8⋊11SD16 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 15 | 0 |
0 | 0 | 13 | 9 |
12 | 5 | 0 | 0 |
12 | 12 | 0 | 0 |
0 | 0 | 7 | 2 |
0 | 0 | 9 | 10 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 10 | 16 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,15,13,0,0,0,9],[12,12,0,0,5,12,0,0,0,0,7,9,0,0,2,10],[1,0,0,0,0,16,0,0,0,0,1,10,0,0,0,16] >;
C8⋊11SD16 in GAP, Magma, Sage, TeX
C_8\rtimes_{11}{\rm SD}_{16}
% in TeX
G:=Group("C8:11SD16");
// GroupNames label
G:=SmallGroup(128,403);
// by ID
G=gap.SmallGroup(128,403);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,448,141,64,422,1123,136,2804,718,172]);
// Polycyclic
G:=Group<a,b,c|a^8=b^8=c^2=1,b*a*b^-1=a^3,a*c=c*a,c*b*c=b^3>;
// generators/relations
Export