Extensions 1→N→G→Q→1 with N=C2 and Q=C2×Q32

Direct product G=N×Q with N=C2 and Q=C2×Q32
dρLabelID
C22×Q32128C2^2xQ32128,2142


Non-split extensions G=N.Q with N=C2 and Q=C2×Q32
extensionφ:Q→Aut NdρLabelID
C2.1(C2×Q32) = C2×C2.Q32central extension (φ=1)128C2.1(C2xQ32)128,869
C2.2(C2×Q32) = C2×C163C4central extension (φ=1)128C2.2(C2xQ32)128,888
C2.3(C2×Q32) = C4×Q32central extension (φ=1)128C2.3(C2xQ32)128,906
C2.4(C2×Q32) = Q16.8D4central stem extension (φ=1)64C2.4(C2xQ32)128,920
C2.5(C2×Q32) = Q16.4D4central stem extension (φ=1)128C2.5(C2xQ32)128,941
C2.6(C2×Q32) = C16.19D4central stem extension (φ=1)64C2.6(C2xQ32)128,948
C2.7(C2×Q32) = C4.Q32central stem extension (φ=1)128C2.7(C2xQ32)128,959
C2.8(C2×Q32) = C23.51D8central stem extension (φ=1)64C2.8(C2xQ32)128,968
C2.9(C2×Q32) = C4.SD32central stem extension (φ=1)128C2.9(C2xQ32)128,973
C2.10(C2×Q32) = C4⋊Q32central stem extension (φ=1)128C2.10(C2xQ32)128,979
C2.11(C2×Q32) = C162Q8central stem extension (φ=1)128C2.11(C2xQ32)128,984

׿
×
𝔽