p-group, metabelian, nilpotent (class 4), monomial
Aliases: Q16.8D4, C22⋊2Q32, C23.47D8, (C2×Q32)⋊1C2, (C2×C4).33D8, (C2×C8).64D4, C8.64(C2×D4), C2.4(C2×Q32), C2.Q32⋊5C2, C4.20C22≀C2, C22⋊C16.5C2, (C2×C16).2C22, C22.98(C2×D8), C4.12(C8⋊C22), (C2×C8).512C23, C2.D8.3C22, C8.18D4.3C2, C2.7(Q32⋊C2), (C22×C4).347D4, (C2×Q16).1C22, (C22×Q16).7C2, C2.28(C22⋊D8), (C22×C8).128C22, (C2×C4).780(C2×D4), SmallGroup(128,920)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for Q16.8D4
G = < a,b,c,d | a8=1, b2=d2=a4, c4=a2, bab-1=dad-1=a-1, ac=ca, cbc-1=ab, dbd-1=a-1b, dcd-1=a6c3 >
Subgroups: 244 in 108 conjugacy classes, 36 normal (20 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, Q8, C23, C16, C22⋊C4, C4⋊C4, C2×C8, C2×C8, Q16, Q16, C22×C4, C22×C4, C2×Q8, Q8⋊C4, C2.D8, C2×C16, Q32, C22⋊Q8, C22×C8, C2×Q16, C2×Q16, C2×Q16, C22×Q8, C22⋊C16, C2.Q32, C8.18D4, C2×Q32, C22×Q16, Q16.8D4
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, Q32, C22≀C2, C2×D8, C8⋊C22, C22⋊D8, C2×Q32, Q32⋊C2, Q16.8D4
Character table of Q16.8D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | 8E | 8F | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 8 | 8 | 8 | 8 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | √2 | -√2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ16 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ17 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ18 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | -√2 | √2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ19 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | -√2 | √2 | ζ165-ζ163 | ζ1615-ζ169 | -ζ1615+ζ169 | ζ165-ζ163 | -ζ165+ζ163 | ζ1615-ζ169 | -ζ165+ζ163 | -ζ1615+ζ169 | symplectic lifted from Q32, Schur index 2 |
ρ20 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | -√2 | √2 | -ζ1615+ζ169 | ζ165-ζ163 | -ζ165+ζ163 | ζ1615-ζ169 | ζ1615-ζ169 | -ζ165+ζ163 | -ζ1615+ζ169 | ζ165-ζ163 | symplectic lifted from Q32, Schur index 2 |
ρ21 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | √2 | -√2 | -ζ1615+ζ169 | ζ165-ζ163 | -ζ165+ζ163 | -ζ1615+ζ169 | ζ1615-ζ169 | ζ165-ζ163 | ζ1615-ζ169 | -ζ165+ζ163 | symplectic lifted from Q32, Schur index 2 |
ρ22 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | √2 | -√2 | ζ165-ζ163 | ζ1615-ζ169 | -ζ1615+ζ169 | -ζ165+ζ163 | -ζ165+ζ163 | -ζ1615+ζ169 | ζ165-ζ163 | ζ1615-ζ169 | symplectic lifted from Q32, Schur index 2 |
ρ23 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | -√2 | √2 | ζ1615-ζ169 | -ζ165+ζ163 | ζ165-ζ163 | -ζ1615+ζ169 | -ζ1615+ζ169 | ζ165-ζ163 | ζ1615-ζ169 | -ζ165+ζ163 | symplectic lifted from Q32, Schur index 2 |
ρ24 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | √2 | -√2 | -ζ165+ζ163 | -ζ1615+ζ169 | ζ1615-ζ169 | ζ165-ζ163 | ζ165-ζ163 | ζ1615-ζ169 | -ζ165+ζ163 | -ζ1615+ζ169 | symplectic lifted from Q32, Schur index 2 |
ρ25 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | √2 | -√2 | ζ1615-ζ169 | -ζ165+ζ163 | ζ165-ζ163 | ζ1615-ζ169 | -ζ1615+ζ169 | -ζ165+ζ163 | -ζ1615+ζ169 | ζ165-ζ163 | symplectic lifted from Q32, Schur index 2 |
ρ26 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | -√2 | √2 | -ζ165+ζ163 | -ζ1615+ζ169 | ζ1615-ζ169 | -ζ165+ζ163 | ζ165-ζ163 | -ζ1615+ζ169 | ζ165-ζ163 | ζ1615-ζ169 | symplectic lifted from Q32, Schur index 2 |
ρ27 | 4 | -4 | -4 | 4 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ28 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q32⋊C2, Schur index 2 |
ρ29 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q32⋊C2, Schur index 2 |
(1 21 5 25 9 29 13 17)(2 22 6 26 10 30 14 18)(3 23 7 27 11 31 15 19)(4 24 8 28 12 32 16 20)(33 58 37 62 41 50 45 54)(34 59 38 63 42 51 46 55)(35 60 39 64 43 52 47 56)(36 61 40 49 44 53 48 57)
(1 35 9 43)(2 57 10 49)(3 33 11 41)(4 55 12 63)(5 47 13 39)(6 53 14 61)(7 45 15 37)(8 51 16 59)(17 60 25 52)(18 36 26 44)(19 58 27 50)(20 34 28 42)(21 56 29 64)(22 48 30 40)(23 54 31 62)(24 46 32 38)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(1 51 9 59)(2 50 10 58)(3 49 11 57)(4 64 12 56)(5 63 13 55)(6 62 14 54)(7 61 15 53)(8 60 16 52)(17 46 25 38)(18 45 26 37)(19 44 27 36)(20 43 28 35)(21 42 29 34)(22 41 30 33)(23 40 31 48)(24 39 32 47)
G:=sub<Sym(64)| (1,21,5,25,9,29,13,17)(2,22,6,26,10,30,14,18)(3,23,7,27,11,31,15,19)(4,24,8,28,12,32,16,20)(33,58,37,62,41,50,45,54)(34,59,38,63,42,51,46,55)(35,60,39,64,43,52,47,56)(36,61,40,49,44,53,48,57), (1,35,9,43)(2,57,10,49)(3,33,11,41)(4,55,12,63)(5,47,13,39)(6,53,14,61)(7,45,15,37)(8,51,16,59)(17,60,25,52)(18,36,26,44)(19,58,27,50)(20,34,28,42)(21,56,29,64)(22,48,30,40)(23,54,31,62)(24,46,32,38), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,51,9,59)(2,50,10,58)(3,49,11,57)(4,64,12,56)(5,63,13,55)(6,62,14,54)(7,61,15,53)(8,60,16,52)(17,46,25,38)(18,45,26,37)(19,44,27,36)(20,43,28,35)(21,42,29,34)(22,41,30,33)(23,40,31,48)(24,39,32,47)>;
G:=Group( (1,21,5,25,9,29,13,17)(2,22,6,26,10,30,14,18)(3,23,7,27,11,31,15,19)(4,24,8,28,12,32,16,20)(33,58,37,62,41,50,45,54)(34,59,38,63,42,51,46,55)(35,60,39,64,43,52,47,56)(36,61,40,49,44,53,48,57), (1,35,9,43)(2,57,10,49)(3,33,11,41)(4,55,12,63)(5,47,13,39)(6,53,14,61)(7,45,15,37)(8,51,16,59)(17,60,25,52)(18,36,26,44)(19,58,27,50)(20,34,28,42)(21,56,29,64)(22,48,30,40)(23,54,31,62)(24,46,32,38), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,51,9,59)(2,50,10,58)(3,49,11,57)(4,64,12,56)(5,63,13,55)(6,62,14,54)(7,61,15,53)(8,60,16,52)(17,46,25,38)(18,45,26,37)(19,44,27,36)(20,43,28,35)(21,42,29,34)(22,41,30,33)(23,40,31,48)(24,39,32,47) );
G=PermutationGroup([[(1,21,5,25,9,29,13,17),(2,22,6,26,10,30,14,18),(3,23,7,27,11,31,15,19),(4,24,8,28,12,32,16,20),(33,58,37,62,41,50,45,54),(34,59,38,63,42,51,46,55),(35,60,39,64,43,52,47,56),(36,61,40,49,44,53,48,57)], [(1,35,9,43),(2,57,10,49),(3,33,11,41),(4,55,12,63),(5,47,13,39),(6,53,14,61),(7,45,15,37),(8,51,16,59),(17,60,25,52),(18,36,26,44),(19,58,27,50),(20,34,28,42),(21,56,29,64),(22,48,30,40),(23,54,31,62),(24,46,32,38)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(1,51,9,59),(2,50,10,58),(3,49,11,57),(4,64,12,56),(5,63,13,55),(6,62,14,54),(7,61,15,53),(8,60,16,52),(17,46,25,38),(18,45,26,37),(19,44,27,36),(20,43,28,35),(21,42,29,34),(22,41,30,33),(23,40,31,48),(24,39,32,47)]])
Matrix representation of Q16.8D4 ►in GL4(𝔽17) generated by
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 14 | 3 |
0 | 0 | 14 | 14 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 12 | 5 |
0 | 0 | 5 | 5 |
0 | 16 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 13 | 6 |
0 | 0 | 11 | 13 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 7 |
0 | 0 | 7 | 16 |
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,14,14,0,0,3,14],[1,0,0,0,0,16,0,0,0,0,12,5,0,0,5,5],[0,16,0,0,16,0,0,0,0,0,13,11,0,0,6,13],[0,1,0,0,1,0,0,0,0,0,1,7,0,0,7,16] >;
Q16.8D4 in GAP, Magma, Sage, TeX
Q_{16}._8D_4
% in TeX
G:=Group("Q16.8D4");
// GroupNames label
G:=SmallGroup(128,920);
// by ID
G=gap.SmallGroup(128,920);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,448,141,456,422,1123,570,360,4037,2028,124]);
// Polycyclic
G:=Group<a,b,c,d|a^8=1,b^2=d^2=a^4,c^4=a^2,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,c*b*c^-1=a*b,d*b*d^-1=a^-1*b,d*c*d^-1=a^6*c^3>;
// generators/relations
Export