Copied to
clipboard

G = Q16.8D4order 128 = 27

1st non-split extension by Q16 of D4 acting via D4/C22=C2

p-group, metabelian, nilpotent (class 4), monomial

Aliases: Q16.8D4, C222Q32, C23.47D8, (C2×Q32)⋊1C2, (C2×C4).33D8, (C2×C8).64D4, C8.64(C2×D4), C2.4(C2×Q32), C2.Q325C2, C4.20C22≀C2, C22⋊C16.5C2, (C2×C16).2C22, C22.98(C2×D8), C4.12(C8⋊C22), (C2×C8).512C23, C2.D8.3C22, C8.18D4.3C2, C2.7(Q32⋊C2), (C22×C4).347D4, (C2×Q16).1C22, (C22×Q16).7C2, C2.28(C22⋊D8), (C22×C8).128C22, (C2×C4).780(C2×D4), SmallGroup(128,920)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C8 — Q16.8D4
C1C2C4C2×C4C2×C8C22×C8C22×Q16 — Q16.8D4
C1C2C4C2×C8 — Q16.8D4
C1C22C22×C4C22×C8 — Q16.8D4
C1C2C2C2C2C4C4C2×C8 — Q16.8D4

Generators and relations for Q16.8D4
 G = < a,b,c,d | a8=1, b2=d2=a4, c4=a2, bab-1=dad-1=a-1, ac=ca, cbc-1=ab, dbd-1=a-1b, dcd-1=a6c3 >

Subgroups: 244 in 108 conjugacy classes, 36 normal (20 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, Q8, C23, C16, C22⋊C4, C4⋊C4, C2×C8, C2×C8, Q16, Q16, C22×C4, C22×C4, C2×Q8, Q8⋊C4, C2.D8, C2×C16, Q32, C22⋊Q8, C22×C8, C2×Q16, C2×Q16, C2×Q16, C22×Q8, C22⋊C16, C2.Q32, C8.18D4, C2×Q32, C22×Q16, Q16.8D4
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, Q32, C22≀C2, C2×D8, C8⋊C22, C22⋊D8, C2×Q32, Q32⋊C2, Q16.8D4

Character table of Q16.8D4

 class 12A2B2C2D2E4A4B4C4D4E4F4G4H4I8A8B8C8D8E8F16A16B16C16D16E16F16G16H
 size 1111222248888161622224444444444
ρ111111111111111111111111111111    trivial
ρ21111-1-111-1-111-1-111111-1-1-1-1-11-1111    linear of order 2
ρ31111-1-111-1-111-11-11111-1-1111-11-1-1-1    linear of order 2
ρ41111111111111-1-1111111-1-1-1-1-1-1-1-1    linear of order 2
ρ5111111111-1-1-1-111111111-1-1-1-1-1-1-1-1    linear of order 2
ρ61111-1-111-11-1-11-111111-1-1111-11-1-1-1    linear of order 2
ρ71111-1-111-11-1-111-11111-1-1-1-1-11-1111    linear of order 2
ρ8111111111-1-1-1-1-1-111111111111111    linear of order 2
ρ92222-2-222-2000000-2-2-2-22200000000    orthogonal lifted from D4
ρ102-2-22002-20-2002002-22-20000000000    orthogonal lifted from D4
ρ112-2-22002-2002-2000-22-220000000000    orthogonal lifted from D4
ρ122-2-22002-20200-2002-22-20000000000    orthogonal lifted from D4
ρ13222222222000000-2-2-2-2-2-200000000    orthogonal lifted from D4
ρ142-2-22002-200-22000-22-220000000000    orthogonal lifted from D4
ρ152222-2-2-2-22000000000000-2222-2-22-2    orthogonal lifted from D8
ρ16222222-2-2-20000000000002-2-222-22-2    orthogonal lifted from D8
ρ17222222-2-2-2000000000000-222-2-22-22    orthogonal lifted from D8
ρ182222-2-2-2-220000000000002-2-2-222-22    orthogonal lifted from D8
ρ192-22-2-2200000000022-2-2-22ζ165163ζ16151691615169ζ165163165163ζ16151691651631615169    symplectic lifted from Q32, Schur index 2
ρ202-22-22-2000000000-2-222-221615169ζ165163165163ζ1615169ζ16151691651631615169ζ165163    symplectic lifted from Q32, Schur index 2
ρ212-22-2-22000000000-2-2222-21615169ζ1651631651631615169ζ1615169ζ165163ζ1615169165163    symplectic lifted from Q32, Schur index 2
ρ222-22-22-200000000022-2-22-2ζ165163ζ161516916151691651631651631615169ζ165163ζ1615169    symplectic lifted from Q32, Schur index 2
ρ232-22-22-2000000000-2-222-22ζ1615169165163ζ16516316151691615169ζ165163ζ1615169165163    symplectic lifted from Q32, Schur index 2
ρ242-22-22-200000000022-2-22-21651631615169ζ1615169ζ165163ζ165163ζ16151691651631615169    symplectic lifted from Q32, Schur index 2
ρ252-22-2-22000000000-2-2222-2ζ1615169165163ζ165163ζ161516916151691651631615169ζ165163    symplectic lifted from Q32, Schur index 2
ρ262-22-2-2200000000022-2-2-221651631615169ζ1615169165163ζ1651631615169ζ165163ζ1615169    symplectic lifted from Q32, Schur index 2
ρ274-4-4400-44000000000000000000000    orthogonal lifted from C8⋊C22
ρ2844-4-40000000000022-22-22220000000000    symplectic lifted from Q32⋊C2, Schur index 2
ρ2944-4-400000000000-222222-220000000000    symplectic lifted from Q32⋊C2, Schur index 2

Smallest permutation representation of Q16.8D4
On 64 points
Generators in S64
(1 21 5 25 9 29 13 17)(2 22 6 26 10 30 14 18)(3 23 7 27 11 31 15 19)(4 24 8 28 12 32 16 20)(33 58 37 62 41 50 45 54)(34 59 38 63 42 51 46 55)(35 60 39 64 43 52 47 56)(36 61 40 49 44 53 48 57)
(1 35 9 43)(2 57 10 49)(3 33 11 41)(4 55 12 63)(5 47 13 39)(6 53 14 61)(7 45 15 37)(8 51 16 59)(17 60 25 52)(18 36 26 44)(19 58 27 50)(20 34 28 42)(21 56 29 64)(22 48 30 40)(23 54 31 62)(24 46 32 38)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(1 51 9 59)(2 50 10 58)(3 49 11 57)(4 64 12 56)(5 63 13 55)(6 62 14 54)(7 61 15 53)(8 60 16 52)(17 46 25 38)(18 45 26 37)(19 44 27 36)(20 43 28 35)(21 42 29 34)(22 41 30 33)(23 40 31 48)(24 39 32 47)

G:=sub<Sym(64)| (1,21,5,25,9,29,13,17)(2,22,6,26,10,30,14,18)(3,23,7,27,11,31,15,19)(4,24,8,28,12,32,16,20)(33,58,37,62,41,50,45,54)(34,59,38,63,42,51,46,55)(35,60,39,64,43,52,47,56)(36,61,40,49,44,53,48,57), (1,35,9,43)(2,57,10,49)(3,33,11,41)(4,55,12,63)(5,47,13,39)(6,53,14,61)(7,45,15,37)(8,51,16,59)(17,60,25,52)(18,36,26,44)(19,58,27,50)(20,34,28,42)(21,56,29,64)(22,48,30,40)(23,54,31,62)(24,46,32,38), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,51,9,59)(2,50,10,58)(3,49,11,57)(4,64,12,56)(5,63,13,55)(6,62,14,54)(7,61,15,53)(8,60,16,52)(17,46,25,38)(18,45,26,37)(19,44,27,36)(20,43,28,35)(21,42,29,34)(22,41,30,33)(23,40,31,48)(24,39,32,47)>;

G:=Group( (1,21,5,25,9,29,13,17)(2,22,6,26,10,30,14,18)(3,23,7,27,11,31,15,19)(4,24,8,28,12,32,16,20)(33,58,37,62,41,50,45,54)(34,59,38,63,42,51,46,55)(35,60,39,64,43,52,47,56)(36,61,40,49,44,53,48,57), (1,35,9,43)(2,57,10,49)(3,33,11,41)(4,55,12,63)(5,47,13,39)(6,53,14,61)(7,45,15,37)(8,51,16,59)(17,60,25,52)(18,36,26,44)(19,58,27,50)(20,34,28,42)(21,56,29,64)(22,48,30,40)(23,54,31,62)(24,46,32,38), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,51,9,59)(2,50,10,58)(3,49,11,57)(4,64,12,56)(5,63,13,55)(6,62,14,54)(7,61,15,53)(8,60,16,52)(17,46,25,38)(18,45,26,37)(19,44,27,36)(20,43,28,35)(21,42,29,34)(22,41,30,33)(23,40,31,48)(24,39,32,47) );

G=PermutationGroup([[(1,21,5,25,9,29,13,17),(2,22,6,26,10,30,14,18),(3,23,7,27,11,31,15,19),(4,24,8,28,12,32,16,20),(33,58,37,62,41,50,45,54),(34,59,38,63,42,51,46,55),(35,60,39,64,43,52,47,56),(36,61,40,49,44,53,48,57)], [(1,35,9,43),(2,57,10,49),(3,33,11,41),(4,55,12,63),(5,47,13,39),(6,53,14,61),(7,45,15,37),(8,51,16,59),(17,60,25,52),(18,36,26,44),(19,58,27,50),(20,34,28,42),(21,56,29,64),(22,48,30,40),(23,54,31,62),(24,46,32,38)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(1,51,9,59),(2,50,10,58),(3,49,11,57),(4,64,12,56),(5,63,13,55),(6,62,14,54),(7,61,15,53),(8,60,16,52),(17,46,25,38),(18,45,26,37),(19,44,27,36),(20,43,28,35),(21,42,29,34),(22,41,30,33),(23,40,31,48),(24,39,32,47)]])

Matrix representation of Q16.8D4 in GL4(𝔽17) generated by

16000
01600
00143
001414
,
1000
01600
00125
0055
,
01600
16000
00136
001113
,
0100
1000
0017
00716
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,14,14,0,0,3,14],[1,0,0,0,0,16,0,0,0,0,12,5,0,0,5,5],[0,16,0,0,16,0,0,0,0,0,13,11,0,0,6,13],[0,1,0,0,1,0,0,0,0,0,1,7,0,0,7,16] >;

Q16.8D4 in GAP, Magma, Sage, TeX

Q_{16}._8D_4
% in TeX

G:=Group("Q16.8D4");
// GroupNames label

G:=SmallGroup(128,920);
// by ID

G=gap.SmallGroup(128,920);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,-2,448,141,456,422,1123,570,360,4037,2028,124]);
// Polycyclic

G:=Group<a,b,c,d|a^8=1,b^2=d^2=a^4,c^4=a^2,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,c*b*c^-1=a*b,d*b*d^-1=a^-1*b,d*c*d^-1=a^6*c^3>;
// generators/relations

Export

Character table of Q16.8D4 in TeX

׿
×
𝔽