Copied to
clipboard

G = C4.SD32order 128 = 27

4th non-split extension by C4 of SD32 acting via SD32/C16=C2

p-group, metabelian, nilpotent (class 4), monomial

Aliases: C4.3Q32, C4.4SD32, C8.19SD16, C42.334D4, (C4×C16).6C2, (C2×C4).82D8, C2.9(C2×Q32), (C2×C8).251D4, C8.51(C4○D4), C82Q8.13C2, C4⋊Q16.9C2, C2.15(C2×SD32), C4.15(C2×SD16), (C2×C16).73C22, (C2×C8).539C23, (C4×C8).400C22, C2.Q32.1C2, C4.8(C4.4D4), C22.125(C2×D8), C2.D8.24C22, C2.10(C4.4D8), (C2×Q16).13C22, (C2×C4).807(C2×D4), SmallGroup(128,973)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C8 — C4.SD32
C1C2C4C8C2×C8C2×C16C4×C16 — C4.SD32
C1C2C4C2×C8 — C4.SD32
C1C22C42C4×C8 — C4.SD32
C1C2C2C2C2C4C4C2×C8 — C4.SD32

Generators and relations for C4.SD32
 G = < a,b,c | a4=b16=1, c2=a2, ab=ba, cac-1=a-1, cbc-1=a2b7 >

Subgroups: 168 in 70 conjugacy classes, 36 normal (18 characteristic)
C1, C2, C4, C4, C4, C22, C8, C2×C4, C2×C4, Q8, C16, C42, C4⋊C4, C2×C8, Q16, C2×Q8, C4×C8, C2.D8, C2.D8, C2×C16, C4⋊Q8, C2×Q16, C2×Q16, C4×C16, C2.Q32, C4⋊Q16, C82Q8, C4.SD32
Quotients: C1, C2, C22, D4, C23, D8, SD16, C2×D4, C4○D4, SD32, Q32, C4.4D4, C2×D8, C2×SD16, C4.4D8, C2×SD32, C2×Q32, C4.SD32

Smallest permutation representation of C4.SD32
Regular action on 128 points
Generators in S128
(1 82 53 41)(2 83 54 42)(3 84 55 43)(4 85 56 44)(5 86 57 45)(6 87 58 46)(7 88 59 47)(8 89 60 48)(9 90 61 33)(10 91 62 34)(11 92 63 35)(12 93 64 36)(13 94 49 37)(14 95 50 38)(15 96 51 39)(16 81 52 40)(17 70 114 112)(18 71 115 97)(19 72 116 98)(20 73 117 99)(21 74 118 100)(22 75 119 101)(23 76 120 102)(24 77 121 103)(25 78 122 104)(26 79 123 105)(27 80 124 106)(28 65 125 107)(29 66 126 108)(30 67 127 109)(31 68 128 110)(32 69 113 111)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)
(1 67 53 109)(2 100 54 74)(3 65 55 107)(4 98 56 72)(5 79 57 105)(6 112 58 70)(7 77 59 103)(8 110 60 68)(9 75 61 101)(10 108 62 66)(11 73 63 99)(12 106 64 80)(13 71 49 97)(14 104 50 78)(15 69 51 111)(16 102 52 76)(17 87 114 46)(18 37 115 94)(19 85 116 44)(20 35 117 92)(21 83 118 42)(22 33 119 90)(23 81 120 40)(24 47 121 88)(25 95 122 38)(26 45 123 86)(27 93 124 36)(28 43 125 84)(29 91 126 34)(30 41 127 82)(31 89 128 48)(32 39 113 96)

G:=sub<Sym(128)| (1,82,53,41)(2,83,54,42)(3,84,55,43)(4,85,56,44)(5,86,57,45)(6,87,58,46)(7,88,59,47)(8,89,60,48)(9,90,61,33)(10,91,62,34)(11,92,63,35)(12,93,64,36)(13,94,49,37)(14,95,50,38)(15,96,51,39)(16,81,52,40)(17,70,114,112)(18,71,115,97)(19,72,116,98)(20,73,117,99)(21,74,118,100)(22,75,119,101)(23,76,120,102)(24,77,121,103)(25,78,122,104)(26,79,123,105)(27,80,124,106)(28,65,125,107)(29,66,126,108)(30,67,127,109)(31,68,128,110)(32,69,113,111), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,67,53,109)(2,100,54,74)(3,65,55,107)(4,98,56,72)(5,79,57,105)(6,112,58,70)(7,77,59,103)(8,110,60,68)(9,75,61,101)(10,108,62,66)(11,73,63,99)(12,106,64,80)(13,71,49,97)(14,104,50,78)(15,69,51,111)(16,102,52,76)(17,87,114,46)(18,37,115,94)(19,85,116,44)(20,35,117,92)(21,83,118,42)(22,33,119,90)(23,81,120,40)(24,47,121,88)(25,95,122,38)(26,45,123,86)(27,93,124,36)(28,43,125,84)(29,91,126,34)(30,41,127,82)(31,89,128,48)(32,39,113,96)>;

G:=Group( (1,82,53,41)(2,83,54,42)(3,84,55,43)(4,85,56,44)(5,86,57,45)(6,87,58,46)(7,88,59,47)(8,89,60,48)(9,90,61,33)(10,91,62,34)(11,92,63,35)(12,93,64,36)(13,94,49,37)(14,95,50,38)(15,96,51,39)(16,81,52,40)(17,70,114,112)(18,71,115,97)(19,72,116,98)(20,73,117,99)(21,74,118,100)(22,75,119,101)(23,76,120,102)(24,77,121,103)(25,78,122,104)(26,79,123,105)(27,80,124,106)(28,65,125,107)(29,66,126,108)(30,67,127,109)(31,68,128,110)(32,69,113,111), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,67,53,109)(2,100,54,74)(3,65,55,107)(4,98,56,72)(5,79,57,105)(6,112,58,70)(7,77,59,103)(8,110,60,68)(9,75,61,101)(10,108,62,66)(11,73,63,99)(12,106,64,80)(13,71,49,97)(14,104,50,78)(15,69,51,111)(16,102,52,76)(17,87,114,46)(18,37,115,94)(19,85,116,44)(20,35,117,92)(21,83,118,42)(22,33,119,90)(23,81,120,40)(24,47,121,88)(25,95,122,38)(26,45,123,86)(27,93,124,36)(28,43,125,84)(29,91,126,34)(30,41,127,82)(31,89,128,48)(32,39,113,96) );

G=PermutationGroup([[(1,82,53,41),(2,83,54,42),(3,84,55,43),(4,85,56,44),(5,86,57,45),(6,87,58,46),(7,88,59,47),(8,89,60,48),(9,90,61,33),(10,91,62,34),(11,92,63,35),(12,93,64,36),(13,94,49,37),(14,95,50,38),(15,96,51,39),(16,81,52,40),(17,70,114,112),(18,71,115,97),(19,72,116,98),(20,73,117,99),(21,74,118,100),(22,75,119,101),(23,76,120,102),(24,77,121,103),(25,78,122,104),(26,79,123,105),(27,80,124,106),(28,65,125,107),(29,66,126,108),(30,67,127,109),(31,68,128,110),(32,69,113,111)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)], [(1,67,53,109),(2,100,54,74),(3,65,55,107),(4,98,56,72),(5,79,57,105),(6,112,58,70),(7,77,59,103),(8,110,60,68),(9,75,61,101),(10,108,62,66),(11,73,63,99),(12,106,64,80),(13,71,49,97),(14,104,50,78),(15,69,51,111),(16,102,52,76),(17,87,114,46),(18,37,115,94),(19,85,116,44),(20,35,117,92),(21,83,118,42),(22,33,119,90),(23,81,120,40),(24,47,121,88),(25,95,122,38),(26,45,123,86),(27,93,124,36),(28,43,125,84),(29,91,126,34),(30,41,127,82),(31,89,128,48),(32,39,113,96)]])

38 conjugacy classes

class 1 2A2B2C4A···4F4G4H4I4J8A···8H16A···16P
order12224···444448···816···16
size11112···2161616162···22···2

38 irreducible representations

dim111112222222
type++++++++-
imageC1C2C2C2C2D4D4SD16C4○D4D8SD32Q32
kernelC4.SD32C4×C16C2.Q32C4⋊Q16C82Q8C42C2×C8C8C8C2×C4C4C4
# reps114111144488

Matrix representation of C4.SD32 in GL4(𝔽17) generated by

0100
16000
001615
0011
,
12500
121200
00212
00117
,
11000
101600
00614
00111
G:=sub<GL(4,GF(17))| [0,16,0,0,1,0,0,0,0,0,16,1,0,0,15,1],[12,12,0,0,5,12,0,0,0,0,2,11,0,0,12,7],[1,10,0,0,10,16,0,0,0,0,6,1,0,0,14,11] >;

C4.SD32 in GAP, Magma, Sage, TeX

C_4.{\rm SD}_{32}
% in TeX

G:=Group("C4.SD32");
// GroupNames label

G:=SmallGroup(128,973);
// by ID

G=gap.SmallGroup(128,973);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,-2,448,141,120,422,58,1123,360,3924,102,4037,124]);
// Polycyclic

G:=Group<a,b,c|a^4=b^16=1,c^2=a^2,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=a^2*b^7>;
// generators/relations

׿
×
𝔽