direct product, p-group, metabelian, nilpotent (class 4), monomial
Aliases: C2×Q32, C4.8D8, C8.11D4, C8.8C23, C16.5C22, C22.16D8, Q16.1C22, C4.9(C2×D4), (C2×C16).4C2, (C2×C4).83D4, C2.14(C2×D8), (C2×Q16).4C2, (C2×C8).84C22, SmallGroup(64,188)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×Q32
G = < a,b,c | a2=b16=1, c2=b8, ab=ba, ac=ca, cbc-1=b-1 >
Character table of C2×Q32
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | 8C | 8D | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | √2 | -√2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ12 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ13 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | -√2 | √2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ14 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ15 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | ζ165-ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | ζ165-ζ163 | ζ1615-ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | -ζ1615+ζ169 | symplectic lifted from Q32, Schur index 2 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -ζ165+ζ163 | ζ1615-ζ169 | ζ165-ζ163 | ζ165-ζ163 | ζ1615-ζ169 | -ζ165+ζ163 | -ζ1615+ζ169 | -ζ1615+ζ169 | symplectic lifted from Q32, Schur index 2 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | -ζ1615+ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | ζ1615-ζ169 | -ζ165+ζ163 | -ζ1615+ζ169 | ζ165-ζ163 | ζ165-ζ163 | symplectic lifted from Q32, Schur index 2 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | ζ1615-ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | ζ1615-ζ169 | -ζ165+ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | ζ165-ζ163 | symplectic lifted from Q32, Schur index 2 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | ζ1615-ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | -ζ1615+ζ169 | ζ165-ζ163 | ζ1615-ζ169 | -ζ165+ζ163 | -ζ165+ζ163 | symplectic lifted from Q32, Schur index 2 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | -ζ165+ζ163 | ζ1615-ζ169 | ζ165-ζ163 | -ζ165+ζ163 | -ζ1615+ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | ζ1615-ζ169 | symplectic lifted from Q32, Schur index 2 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | ζ165-ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | -ζ165+ζ163 | -ζ1615+ζ169 | ζ165-ζ163 | ζ1615-ζ169 | ζ1615-ζ169 | symplectic lifted from Q32, Schur index 2 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | -ζ1615+ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | -ζ1615+ζ169 | ζ165-ζ163 | ζ1615-ζ169 | ζ165-ζ163 | -ζ165+ζ163 | symplectic lifted from Q32, Schur index 2 |
(1 18)(2 19)(3 20)(4 21)(5 22)(6 23)(7 24)(8 25)(9 26)(10 27)(11 28)(12 29)(13 30)(14 31)(15 32)(16 17)(33 49)(34 50)(35 51)(36 52)(37 53)(38 54)(39 55)(40 56)(41 57)(42 58)(43 59)(44 60)(45 61)(46 62)(47 63)(48 64)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(1 47 9 39)(2 46 10 38)(3 45 11 37)(4 44 12 36)(5 43 13 35)(6 42 14 34)(7 41 15 33)(8 40 16 48)(17 64 25 56)(18 63 26 55)(19 62 27 54)(20 61 28 53)(21 60 29 52)(22 59 30 51)(23 58 31 50)(24 57 32 49)
G:=sub<Sym(64)| (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,17)(33,49)(34,50)(35,51)(36,52)(37,53)(38,54)(39,55)(40,56)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(48,64), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,47,9,39)(2,46,10,38)(3,45,11,37)(4,44,12,36)(5,43,13,35)(6,42,14,34)(7,41,15,33)(8,40,16,48)(17,64,25,56)(18,63,26,55)(19,62,27,54)(20,61,28,53)(21,60,29,52)(22,59,30,51)(23,58,31,50)(24,57,32,49)>;
G:=Group( (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,17)(33,49)(34,50)(35,51)(36,52)(37,53)(38,54)(39,55)(40,56)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(48,64), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,47,9,39)(2,46,10,38)(3,45,11,37)(4,44,12,36)(5,43,13,35)(6,42,14,34)(7,41,15,33)(8,40,16,48)(17,64,25,56)(18,63,26,55)(19,62,27,54)(20,61,28,53)(21,60,29,52)(22,59,30,51)(23,58,31,50)(24,57,32,49) );
G=PermutationGroup([[(1,18),(2,19),(3,20),(4,21),(5,22),(6,23),(7,24),(8,25),(9,26),(10,27),(11,28),(12,29),(13,30),(14,31),(15,32),(16,17),(33,49),(34,50),(35,51),(36,52),(37,53),(38,54),(39,55),(40,56),(41,57),(42,58),(43,59),(44,60),(45,61),(46,62),(47,63),(48,64)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(1,47,9,39),(2,46,10,38),(3,45,11,37),(4,44,12,36),(5,43,13,35),(6,42,14,34),(7,41,15,33),(8,40,16,48),(17,64,25,56),(18,63,26,55),(19,62,27,54),(20,61,28,53),(21,60,29,52),(22,59,30,51),(23,58,31,50),(24,57,32,49)]])
C2×Q32 is a maximal subgroup of
Q32⋊2C4 C16.18D4 Q32⋊4C4 Q16.8D4 D8.10D4 D8.12D4 Q16.4D4 Q16.5D4 C16.19D4 C16.D4 D4.4D8 C4⋊Q32 C8.21D8 C8.7D8 Q64⋊C2 Q8○D16
C2×Q32 is a maximal quotient of
Q16.8D4 Q16.4D4 C16.19D4 C4.Q32 C23.51D8 C4.SD32 C4⋊Q32 C16⋊2Q8
Matrix representation of C2×Q32 ►in GL3(𝔽17) generated by
16 | 0 | 0 |
0 | 16 | 0 |
0 | 0 | 16 |
1 | 0 | 0 |
0 | 2 | 8 |
0 | 13 | 10 |
1 | 0 | 0 |
0 | 7 | 10 |
0 | 12 | 10 |
G:=sub<GL(3,GF(17))| [16,0,0,0,16,0,0,0,16],[1,0,0,0,2,13,0,8,10],[1,0,0,0,7,12,0,10,10] >;
C2×Q32 in GAP, Magma, Sage, TeX
C_2\times Q_{32}
% in TeX
G:=Group("C2xQ32");
// GroupNames label
G:=SmallGroup(64,188);
// by ID
G=gap.SmallGroup(64,188);
# by ID
G:=PCGroup([6,-2,2,2,-2,-2,-2,192,121,199,579,297,165,1444,730,88]);
// Polycyclic
G:=Group<a,b,c|a^2=b^16=1,c^2=b^8,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export
Subgroup lattice of C2×Q32 in TeX
Character table of C2×Q32 in TeX