Copied to
clipboard

G = C162Q8order 128 = 27

1st semidirect product of C16 and Q8 acting via Q8/C4=C2

p-group, metabelian, nilpotent (class 4), monomial

Aliases: C162Q8, C4.5D16, C4.4Q32, C8.8Q16, C42.340D4, (C2×C4).86D8, C4.5(C4⋊Q8), C8.18(C2×Q8), C4.9(C2×Q16), (C4×C16).10C2, (C2×C8).255D4, C2.11(C2×D16), C2.11(C2×Q32), C163C4.6C2, C82Q8.14C2, C2.6(C82Q8), (C4×C8).404C22, (C2×C8).550C23, (C2×C16).86C22, C22.136(C2×D8), C2.D8.29C22, (C2×C4).818(C2×D4), SmallGroup(128,984)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C8 — C162Q8
C1C2C4C8C2×C8C2×C16C4×C16 — C162Q8
C1C2C4C2×C8 — C162Q8
C1C22C42C4×C8 — C162Q8
C1C2C2C2C2C4C4C2×C8 — C162Q8

Generators and relations for C162Q8
 G = < a,b,c | a16=b4=1, c2=b2, ab=ba, cac-1=a-1, cbc-1=b-1 >

Subgroups: 152 in 64 conjugacy classes, 40 normal (16 characteristic)
C1, C2, C4, C4, C4, C22, C8, C2×C4, C2×C4, Q8, C16, C42, C4⋊C4, C2×C8, C2×Q8, C4×C8, C2.D8, C2.D8, C2×C16, C4⋊Q8, C4×C16, C163C4, C82Q8, C162Q8
Quotients: C1, C2, C22, D4, Q8, C23, D8, Q16, C2×D4, C2×Q8, D16, Q32, C4⋊Q8, C2×D8, C2×Q16, C82Q8, C2×D16, C2×Q32, C162Q8

Smallest permutation representation of C162Q8
Regular action on 128 points
Generators in S128
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)
(1 27 97 128)(2 28 98 113)(3 29 99 114)(4 30 100 115)(5 31 101 116)(6 32 102 117)(7 17 103 118)(8 18 104 119)(9 19 105 120)(10 20 106 121)(11 21 107 122)(12 22 108 123)(13 23 109 124)(14 24 110 125)(15 25 111 126)(16 26 112 127)(33 77 84 50)(34 78 85 51)(35 79 86 52)(36 80 87 53)(37 65 88 54)(38 66 89 55)(39 67 90 56)(40 68 91 57)(41 69 92 58)(42 70 93 59)(43 71 94 60)(44 72 95 61)(45 73 96 62)(46 74 81 63)(47 75 82 64)(48 76 83 49)
(1 81 97 46)(2 96 98 45)(3 95 99 44)(4 94 100 43)(5 93 101 42)(6 92 102 41)(7 91 103 40)(8 90 104 39)(9 89 105 38)(10 88 106 37)(11 87 107 36)(12 86 108 35)(13 85 109 34)(14 84 110 33)(15 83 111 48)(16 82 112 47)(17 68 118 57)(18 67 119 56)(19 66 120 55)(20 65 121 54)(21 80 122 53)(22 79 123 52)(23 78 124 51)(24 77 125 50)(25 76 126 49)(26 75 127 64)(27 74 128 63)(28 73 113 62)(29 72 114 61)(30 71 115 60)(31 70 116 59)(32 69 117 58)

G:=sub<Sym(128)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,27,97,128)(2,28,98,113)(3,29,99,114)(4,30,100,115)(5,31,101,116)(6,32,102,117)(7,17,103,118)(8,18,104,119)(9,19,105,120)(10,20,106,121)(11,21,107,122)(12,22,108,123)(13,23,109,124)(14,24,110,125)(15,25,111,126)(16,26,112,127)(33,77,84,50)(34,78,85,51)(35,79,86,52)(36,80,87,53)(37,65,88,54)(38,66,89,55)(39,67,90,56)(40,68,91,57)(41,69,92,58)(42,70,93,59)(43,71,94,60)(44,72,95,61)(45,73,96,62)(46,74,81,63)(47,75,82,64)(48,76,83,49), (1,81,97,46)(2,96,98,45)(3,95,99,44)(4,94,100,43)(5,93,101,42)(6,92,102,41)(7,91,103,40)(8,90,104,39)(9,89,105,38)(10,88,106,37)(11,87,107,36)(12,86,108,35)(13,85,109,34)(14,84,110,33)(15,83,111,48)(16,82,112,47)(17,68,118,57)(18,67,119,56)(19,66,120,55)(20,65,121,54)(21,80,122,53)(22,79,123,52)(23,78,124,51)(24,77,125,50)(25,76,126,49)(26,75,127,64)(27,74,128,63)(28,73,113,62)(29,72,114,61)(30,71,115,60)(31,70,116,59)(32,69,117,58)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,27,97,128)(2,28,98,113)(3,29,99,114)(4,30,100,115)(5,31,101,116)(6,32,102,117)(7,17,103,118)(8,18,104,119)(9,19,105,120)(10,20,106,121)(11,21,107,122)(12,22,108,123)(13,23,109,124)(14,24,110,125)(15,25,111,126)(16,26,112,127)(33,77,84,50)(34,78,85,51)(35,79,86,52)(36,80,87,53)(37,65,88,54)(38,66,89,55)(39,67,90,56)(40,68,91,57)(41,69,92,58)(42,70,93,59)(43,71,94,60)(44,72,95,61)(45,73,96,62)(46,74,81,63)(47,75,82,64)(48,76,83,49), (1,81,97,46)(2,96,98,45)(3,95,99,44)(4,94,100,43)(5,93,101,42)(6,92,102,41)(7,91,103,40)(8,90,104,39)(9,89,105,38)(10,88,106,37)(11,87,107,36)(12,86,108,35)(13,85,109,34)(14,84,110,33)(15,83,111,48)(16,82,112,47)(17,68,118,57)(18,67,119,56)(19,66,120,55)(20,65,121,54)(21,80,122,53)(22,79,123,52)(23,78,124,51)(24,77,125,50)(25,76,126,49)(26,75,127,64)(27,74,128,63)(28,73,113,62)(29,72,114,61)(30,71,115,60)(31,70,116,59)(32,69,117,58) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)], [(1,27,97,128),(2,28,98,113),(3,29,99,114),(4,30,100,115),(5,31,101,116),(6,32,102,117),(7,17,103,118),(8,18,104,119),(9,19,105,120),(10,20,106,121),(11,21,107,122),(12,22,108,123),(13,23,109,124),(14,24,110,125),(15,25,111,126),(16,26,112,127),(33,77,84,50),(34,78,85,51),(35,79,86,52),(36,80,87,53),(37,65,88,54),(38,66,89,55),(39,67,90,56),(40,68,91,57),(41,69,92,58),(42,70,93,59),(43,71,94,60),(44,72,95,61),(45,73,96,62),(46,74,81,63),(47,75,82,64),(48,76,83,49)], [(1,81,97,46),(2,96,98,45),(3,95,99,44),(4,94,100,43),(5,93,101,42),(6,92,102,41),(7,91,103,40),(8,90,104,39),(9,89,105,38),(10,88,106,37),(11,87,107,36),(12,86,108,35),(13,85,109,34),(14,84,110,33),(15,83,111,48),(16,82,112,47),(17,68,118,57),(18,67,119,56),(19,66,120,55),(20,65,121,54),(21,80,122,53),(22,79,123,52),(23,78,124,51),(24,77,125,50),(25,76,126,49),(26,75,127,64),(27,74,128,63),(28,73,113,62),(29,72,114,61),(30,71,115,60),(31,70,116,59),(32,69,117,58)]])

38 conjugacy classes

class 1 2A2B2C4A···4F4G4H4I4J8A···8H16A···16P
order12224···444448···816···16
size11112···2161616162···22···2

38 irreducible representations

dim11112222222
type++++-++-++-
imageC1C2C2C2Q8D4D4Q16D8D16Q32
kernelC162Q8C4×C16C163C4C82Q8C16C42C2×C8C8C2×C4C4C4
# reps11424114488

Matrix representation of C162Q8 in GL4(𝔽17) generated by

41100
6400
00136
001113
,
0100
16000
0010
0001
,
121200
12500
00114
0046
G:=sub<GL(4,GF(17))| [4,6,0,0,11,4,0,0,0,0,13,11,0,0,6,13],[0,16,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[12,12,0,0,12,5,0,0,0,0,11,4,0,0,4,6] >;

C162Q8 in GAP, Magma, Sage, TeX

C_{16}\rtimes_2Q_8
% in TeX

G:=Group("C16:2Q8");
// GroupNames label

G:=SmallGroup(128,984);
// by ID

G=gap.SmallGroup(128,984);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,-2,56,141,64,422,268,1684,242,4037,124]);
// Polycyclic

G:=Group<a,b,c|a^16=b^4=1,c^2=b^2,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=b^-1>;
// generators/relations

׿
×
𝔽