Copied to
clipboard

G = C4⋊Q32order 128 = 27

The semidirect product of C4 and Q32 acting via Q32/C16=C2

p-group, metabelian, nilpotent (class 4), monomial

Aliases: C41Q32, C8.16D8, C16.8D4, C42.337D4, C4.8(C2×D8), (C4×C16).9C2, (C2×C4).84D8, C8.40(C2×D4), (C2×C8).253D4, (C2×Q32).3C2, C2.10(C2×Q32), C4.2(C41D4), C2.13(C84D4), (C2×C16).84C22, (C4×C8).402C22, (C2×C8).545C23, C4⋊Q16.10C2, C22.131(C2×D8), (C2×Q16).17C22, (C2×C4).813(C2×D4), SmallGroup(128,979)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C8 — C4⋊Q32
C1C2C4C2×C4C2×C8C4×C8C4×C16 — C4⋊Q32
C1C2C4C2×C8 — C4⋊Q32
C1C22C42C4×C8 — C4⋊Q32
C1C2C2C2C2C4C4C2×C8 — C4⋊Q32

Generators and relations for C4⋊Q32
 G = < a,b,c | a4=b16=1, c2=b8, ab=ba, cac-1=a-1, cbc-1=b-1 >

Subgroups: 200 in 88 conjugacy classes, 40 normal (12 characteristic)
C1, C2, C2, C4, C4, C4, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C16, C42, C4⋊C4, C2×C8, Q16, C2×Q8, C4×C8, C2×C16, Q32, C4⋊Q8, C2×Q16, C2×Q16, C4×C16, C4⋊Q16, C2×Q32, C4⋊Q32
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, Q32, C41D4, C2×D8, C84D4, C2×Q32, C4⋊Q32

Smallest permutation representation of C4⋊Q32
Regular action on 128 points
Generators in S128
(1 70 21 108)(2 71 22 109)(3 72 23 110)(4 73 24 111)(5 74 25 112)(6 75 26 97)(7 76 27 98)(8 77 28 99)(9 78 29 100)(10 79 30 101)(11 80 31 102)(12 65 32 103)(13 66 17 104)(14 67 18 105)(15 68 19 106)(16 69 20 107)(33 119 96 64)(34 120 81 49)(35 121 82 50)(36 122 83 51)(37 123 84 52)(38 124 85 53)(39 125 86 54)(40 126 87 55)(41 127 88 56)(42 128 89 57)(43 113 90 58)(44 114 91 59)(45 115 92 60)(46 116 93 61)(47 117 94 62)(48 118 95 63)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)
(1 126 9 118)(2 125 10 117)(3 124 11 116)(4 123 12 115)(5 122 13 114)(6 121 14 113)(7 120 15 128)(8 119 16 127)(17 59 25 51)(18 58 26 50)(19 57 27 49)(20 56 28 64)(21 55 29 63)(22 54 30 62)(23 53 31 61)(24 52 32 60)(33 69 41 77)(34 68 42 76)(35 67 43 75)(36 66 44 74)(37 65 45 73)(38 80 46 72)(39 79 47 71)(40 78 48 70)(81 106 89 98)(82 105 90 97)(83 104 91 112)(84 103 92 111)(85 102 93 110)(86 101 94 109)(87 100 95 108)(88 99 96 107)

G:=sub<Sym(128)| (1,70,21,108)(2,71,22,109)(3,72,23,110)(4,73,24,111)(5,74,25,112)(6,75,26,97)(7,76,27,98)(8,77,28,99)(9,78,29,100)(10,79,30,101)(11,80,31,102)(12,65,32,103)(13,66,17,104)(14,67,18,105)(15,68,19,106)(16,69,20,107)(33,119,96,64)(34,120,81,49)(35,121,82,50)(36,122,83,51)(37,123,84,52)(38,124,85,53)(39,125,86,54)(40,126,87,55)(41,127,88,56)(42,128,89,57)(43,113,90,58)(44,114,91,59)(45,115,92,60)(46,116,93,61)(47,117,94,62)(48,118,95,63), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,126,9,118)(2,125,10,117)(3,124,11,116)(4,123,12,115)(5,122,13,114)(6,121,14,113)(7,120,15,128)(8,119,16,127)(17,59,25,51)(18,58,26,50)(19,57,27,49)(20,56,28,64)(21,55,29,63)(22,54,30,62)(23,53,31,61)(24,52,32,60)(33,69,41,77)(34,68,42,76)(35,67,43,75)(36,66,44,74)(37,65,45,73)(38,80,46,72)(39,79,47,71)(40,78,48,70)(81,106,89,98)(82,105,90,97)(83,104,91,112)(84,103,92,111)(85,102,93,110)(86,101,94,109)(87,100,95,108)(88,99,96,107)>;

G:=Group( (1,70,21,108)(2,71,22,109)(3,72,23,110)(4,73,24,111)(5,74,25,112)(6,75,26,97)(7,76,27,98)(8,77,28,99)(9,78,29,100)(10,79,30,101)(11,80,31,102)(12,65,32,103)(13,66,17,104)(14,67,18,105)(15,68,19,106)(16,69,20,107)(33,119,96,64)(34,120,81,49)(35,121,82,50)(36,122,83,51)(37,123,84,52)(38,124,85,53)(39,125,86,54)(40,126,87,55)(41,127,88,56)(42,128,89,57)(43,113,90,58)(44,114,91,59)(45,115,92,60)(46,116,93,61)(47,117,94,62)(48,118,95,63), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,126,9,118)(2,125,10,117)(3,124,11,116)(4,123,12,115)(5,122,13,114)(6,121,14,113)(7,120,15,128)(8,119,16,127)(17,59,25,51)(18,58,26,50)(19,57,27,49)(20,56,28,64)(21,55,29,63)(22,54,30,62)(23,53,31,61)(24,52,32,60)(33,69,41,77)(34,68,42,76)(35,67,43,75)(36,66,44,74)(37,65,45,73)(38,80,46,72)(39,79,47,71)(40,78,48,70)(81,106,89,98)(82,105,90,97)(83,104,91,112)(84,103,92,111)(85,102,93,110)(86,101,94,109)(87,100,95,108)(88,99,96,107) );

G=PermutationGroup([[(1,70,21,108),(2,71,22,109),(3,72,23,110),(4,73,24,111),(5,74,25,112),(6,75,26,97),(7,76,27,98),(8,77,28,99),(9,78,29,100),(10,79,30,101),(11,80,31,102),(12,65,32,103),(13,66,17,104),(14,67,18,105),(15,68,19,106),(16,69,20,107),(33,119,96,64),(34,120,81,49),(35,121,82,50),(36,122,83,51),(37,123,84,52),(38,124,85,53),(39,125,86,54),(40,126,87,55),(41,127,88,56),(42,128,89,57),(43,113,90,58),(44,114,91,59),(45,115,92,60),(46,116,93,61),(47,117,94,62),(48,118,95,63)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)], [(1,126,9,118),(2,125,10,117),(3,124,11,116),(4,123,12,115),(5,122,13,114),(6,121,14,113),(7,120,15,128),(8,119,16,127),(17,59,25,51),(18,58,26,50),(19,57,27,49),(20,56,28,64),(21,55,29,63),(22,54,30,62),(23,53,31,61),(24,52,32,60),(33,69,41,77),(34,68,42,76),(35,67,43,75),(36,66,44,74),(37,65,45,73),(38,80,46,72),(39,79,47,71),(40,78,48,70),(81,106,89,98),(82,105,90,97),(83,104,91,112),(84,103,92,111),(85,102,93,110),(86,101,94,109),(87,100,95,108),(88,99,96,107)]])

38 conjugacy classes

class 1 2A2B2C4A···4F4G4H4I4J8A···8H16A···16P
order12224···444448···816···16
size11112···2161616162···22···2

38 irreducible representations

dim1111222222
type+++++++++-
imageC1C2C2C2D4D4D4D8D8Q32
kernelC4⋊Q32C4×C16C4⋊Q16C2×Q32C16C42C2×C8C8C2×C4C4
# reps11244114416

Matrix representation of C4⋊Q32 in GL4(𝔽17) generated by

16200
16100
00160
00016
,
01100
31100
001311
00613
,
15900
11200
00512
001212
G:=sub<GL(4,GF(17))| [16,16,0,0,2,1,0,0,0,0,16,0,0,0,0,16],[0,3,0,0,11,11,0,0,0,0,13,6,0,0,11,13],[15,11,0,0,9,2,0,0,0,0,5,12,0,0,12,12] >;

C4⋊Q32 in GAP, Magma, Sage, TeX

C_4\rtimes Q_{32}
% in TeX

G:=Group("C4:Q32");
// GroupNames label

G:=SmallGroup(128,979);
// by ID

G=gap.SmallGroup(128,979);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,-2,448,141,288,422,100,1123,360,4037,124]);
// Polycyclic

G:=Group<a,b,c|a^4=b^16=1,c^2=b^8,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=b^-1>;
// generators/relations

׿
×
𝔽