Extensions 1→N→G→Q→1 with N=D4 and Q=M4(2)

Direct product G=N×Q with N=D4 and Q=M4(2)

Semidirect products G=N:Q with N=D4 and Q=M4(2)
extensionφ:Q→Out NdρLabelID
D41M4(2) = C89D8φ: M4(2)/C8C2 ⊆ Out D464D4:1M4(2)128,313
D42M4(2) = D42M4(2)φ: M4(2)/C8C2 ⊆ Out D464D4:2M4(2)128,318
D43M4(2) = D4⋊M4(2)φ: M4(2)/C2×C4C2 ⊆ Out D432D4:3M4(2)128,218
D44M4(2) = D44M4(2)φ: M4(2)/C2×C4C2 ⊆ Out D464D4:4M4(2)128,221
D45M4(2) = D45M4(2)φ: M4(2)/C2×C4C2 ⊆ Out D432D4:5M4(2)128,222
D46M4(2) = D46M4(2)φ: trivial image64D4:6M4(2)128,1702
D47M4(2) = D47M4(2)φ: trivial image32D4:7M4(2)128,1706
D48M4(2) = D48M4(2)φ: trivial image64D4:8M4(2)128,1722

Non-split extensions G=N.Q with N=D4 and Q=M4(2)
extensionφ:Q→Out NdρLabelID
D4.1M4(2) = C812SD16φ: M4(2)/C8C2 ⊆ Out D464D4.1M4(2)128,314
D4.2M4(2) = D4.M4(2)φ: M4(2)/C8C2 ⊆ Out D464D4.2M4(2)128,317
D4.3M4(2) = C42.374D4φ: M4(2)/C2×C4C2 ⊆ Out D464D4.3M4(2)128,220