Copied to
clipboard

G = D46M4(2)  order 128 = 27

1st semidirect product of D4 and M4(2) acting through Inn(D4)

p-group, metabelian, nilpotent (class 2), monomial

Aliases: D46M4(2), C42.295C23, (C8×D4)⋊44C2, D42(C8⋊C4), C816(C4○D4), C89D438C2, C84Q838C2, (C4×D4).30C4, (C4×Q8).28C4, C4⋊C8.235C22, (C4×M4(2))⋊38C2, (C2×C8).430C23, (C4×C8).336C22, (C2×C4).667C24, C42.218(C2×C4), C4.33(C2×M4(2)), C42⋊C2.32C4, C42.6C448C2, (C4×D4).296C22, (C4×Q8).281C22, C8⋊C4.176C22, C22.6(C2×M4(2)), C2.25(Q8○M4(2)), C22⋊C8.143C22, (C2×C42).777C22, C22.192(C23×C4), C23.148(C22×C4), (C22×C8).449C22, (C22×C4).937C23, C2.16(C22×M4(2)), (C2×M4(2)).369C22, C8⋊C4(C4×D4), C4⋊C4(C8⋊C4), (C2×D4)(C8⋊C4), (C2×C8⋊C4)⋊36C2, C2.49(C4×C4○D4), C4⋊C4.226(C2×C4), C22⋊C4(C8⋊C4), (C2×C4○D4).26C4, (C4×C4○D4).16C2, C4.318(C2×C4○D4), (C2×D4).251(C2×C4), C22⋊C4.92(C2×C4), (C2×Q8).210(C2×C4), (C2×C4).297(C22×C4), (C22×C4).351(C2×C4), SmallGroup(128,1702)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — D46M4(2)
C1C2C4C2×C4C42C8⋊C4C2×C8⋊C4 — D46M4(2)
C1C22 — D46M4(2)
C1C2×C4 — D46M4(2)
C1C2C2C2×C4 — D46M4(2)

Generators and relations for D46M4(2)
 G = < a,b,c,d | a4=b2=c8=d2=1, bab=a-1, ac=ca, ad=da, cbc-1=dbd=a2b, dcd=c5 >

Subgroups: 276 in 203 conjugacy classes, 138 normal (36 characteristic)
C1, C2 [×3], C2 [×5], C4 [×4], C4 [×10], C22, C22 [×4], C22 [×7], C8 [×4], C8 [×6], C2×C4 [×6], C2×C4 [×6], C2×C4 [×15], D4 [×4], D4 [×4], Q8 [×2], C23, C23 [×2], C42 [×4], C42 [×6], C22⋊C4 [×6], C4⋊C4 [×2], C4⋊C4 [×4], C2×C8 [×8], C2×C8 [×8], M4(2) [×4], C22×C4 [×3], C22×C4 [×6], C2×D4, C2×D4 [×2], C2×Q8, C4○D4 [×4], C4×C8 [×2], C8⋊C4 [×2], C8⋊C4 [×6], C22⋊C8 [×6], C4⋊C8 [×6], C2×C42, C2×C42 [×2], C42⋊C2, C42⋊C2 [×2], C4×D4 [×2], C4×D4 [×4], C4×Q8 [×2], C22×C8 [×4], C2×M4(2) [×2], C2×C4○D4, C2×C8⋊C4 [×2], C4×M4(2), C42.6C4, C42.6C4 [×2], C8×D4 [×2], C89D4 [×4], C84Q8 [×2], C4×C4○D4, D46M4(2)
Quotients: C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], C23 [×15], M4(2) [×4], C22×C4 [×14], C4○D4 [×4], C24, C2×M4(2) [×6], C23×C4, C2×C4○D4 [×2], C4×C4○D4, C22×M4(2), Q8○M4(2), D46M4(2)

Smallest permutation representation of D46M4(2)
On 64 points
Generators in S64
(1 16 27 39)(2 9 28 40)(3 10 29 33)(4 11 30 34)(5 12 31 35)(6 13 32 36)(7 14 25 37)(8 15 26 38)(17 62 41 53)(18 63 42 54)(19 64 43 55)(20 57 44 56)(21 58 45 49)(22 59 46 50)(23 60 47 51)(24 61 48 52)
(1 18)(2 43)(3 20)(4 45)(5 22)(6 47)(7 24)(8 41)(9 64)(10 56)(11 58)(12 50)(13 60)(14 52)(15 62)(16 54)(17 26)(19 28)(21 30)(23 32)(25 48)(27 42)(29 44)(31 46)(33 57)(34 49)(35 59)(36 51)(37 61)(38 53)(39 63)(40 55)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(2 6)(4 8)(9 13)(11 15)(17 45)(18 42)(19 47)(20 44)(21 41)(22 46)(23 43)(24 48)(26 30)(28 32)(34 38)(36 40)(49 62)(50 59)(51 64)(52 61)(53 58)(54 63)(55 60)(56 57)

G:=sub<Sym(64)| (1,16,27,39)(2,9,28,40)(3,10,29,33)(4,11,30,34)(5,12,31,35)(6,13,32,36)(7,14,25,37)(8,15,26,38)(17,62,41,53)(18,63,42,54)(19,64,43,55)(20,57,44,56)(21,58,45,49)(22,59,46,50)(23,60,47,51)(24,61,48,52), (1,18)(2,43)(3,20)(4,45)(5,22)(6,47)(7,24)(8,41)(9,64)(10,56)(11,58)(12,50)(13,60)(14,52)(15,62)(16,54)(17,26)(19,28)(21,30)(23,32)(25,48)(27,42)(29,44)(31,46)(33,57)(34,49)(35,59)(36,51)(37,61)(38,53)(39,63)(40,55), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,6)(4,8)(9,13)(11,15)(17,45)(18,42)(19,47)(20,44)(21,41)(22,46)(23,43)(24,48)(26,30)(28,32)(34,38)(36,40)(49,62)(50,59)(51,64)(52,61)(53,58)(54,63)(55,60)(56,57)>;

G:=Group( (1,16,27,39)(2,9,28,40)(3,10,29,33)(4,11,30,34)(5,12,31,35)(6,13,32,36)(7,14,25,37)(8,15,26,38)(17,62,41,53)(18,63,42,54)(19,64,43,55)(20,57,44,56)(21,58,45,49)(22,59,46,50)(23,60,47,51)(24,61,48,52), (1,18)(2,43)(3,20)(4,45)(5,22)(6,47)(7,24)(8,41)(9,64)(10,56)(11,58)(12,50)(13,60)(14,52)(15,62)(16,54)(17,26)(19,28)(21,30)(23,32)(25,48)(27,42)(29,44)(31,46)(33,57)(34,49)(35,59)(36,51)(37,61)(38,53)(39,63)(40,55), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,6)(4,8)(9,13)(11,15)(17,45)(18,42)(19,47)(20,44)(21,41)(22,46)(23,43)(24,48)(26,30)(28,32)(34,38)(36,40)(49,62)(50,59)(51,64)(52,61)(53,58)(54,63)(55,60)(56,57) );

G=PermutationGroup([(1,16,27,39),(2,9,28,40),(3,10,29,33),(4,11,30,34),(5,12,31,35),(6,13,32,36),(7,14,25,37),(8,15,26,38),(17,62,41,53),(18,63,42,54),(19,64,43,55),(20,57,44,56),(21,58,45,49),(22,59,46,50),(23,60,47,51),(24,61,48,52)], [(1,18),(2,43),(3,20),(4,45),(5,22),(6,47),(7,24),(8,41),(9,64),(10,56),(11,58),(12,50),(13,60),(14,52),(15,62),(16,54),(17,26),(19,28),(21,30),(23,32),(25,48),(27,42),(29,44),(31,46),(33,57),(34,49),(35,59),(36,51),(37,61),(38,53),(39,63),(40,55)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(2,6),(4,8),(9,13),(11,15),(17,45),(18,42),(19,47),(20,44),(21,41),(22,46),(23,43),(24,48),(26,30),(28,32),(34,38),(36,40),(49,62),(50,59),(51,64),(52,61),(53,58),(54,63),(55,60),(56,57)])

50 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E···4P4Q···4U8A···8H8I···8T
order12222222244444···44···48···88···8
size11112222411112···24···42···24···4

50 irreducible representations

dim111111111111224
type++++++++
imageC1C2C2C2C2C2C2C2C4C4C4C4C4○D4M4(2)Q8○M4(2)
kernelD46M4(2)C2×C8⋊C4C4×M4(2)C42.6C4C8×D4C89D4C84Q8C4×C4○D4C42⋊C2C4×D4C4×Q8C2×C4○D4C8D4C2
# reps121324216622882

Matrix representation of D46M4(2) in GL4(𝔽17) generated by

1000
0100
0040
001413
,
16000
01600
0038
001614
,
0100
4000
00130
0034
,
1000
01600
0010
001216
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,4,14,0,0,0,13],[16,0,0,0,0,16,0,0,0,0,3,16,0,0,8,14],[0,4,0,0,1,0,0,0,0,0,13,3,0,0,0,4],[1,0,0,0,0,16,0,0,0,0,1,12,0,0,0,16] >;

D46M4(2) in GAP, Magma, Sage, TeX

D_4\rtimes_6M_4(2)
% in TeX

G:=Group("D4:6M4(2)");
// GroupNames label

G:=SmallGroup(128,1702);
// by ID

G=gap.SmallGroup(128,1702);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,184,2019,521,80,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^8=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=a^2*b,d*c*d=c^5>;
// generators/relations

׿
×
𝔽