direct product, p-group, metabelian, nilpotent (class 2), monomial
Aliases: D4×M4(2), C42.268C23, C8⋊15(C2×D4), (C8×D4)⋊39C2, C4⋊C4○2M4(2), C8⋊9D4⋊33C2, C8⋊6D4⋊34C2, C4⋊C8⋊89C22, (C4×C8)⋊58C22, (C4×D4).28C4, C4.152(C4×D4), C4⋊2(C2×M4(2)), C24.82(C2×C4), C22⋊C4○2M4(2), C22.67(C4×D4), C8⋊C4⋊61C22, (C4×M4(2))⋊33C2, C22⋊C8⋊78C22, C42.210(C2×C4), (C2×C8).406C23, (C2×C4).653C24, (C22×C8)⋊53C22, (C22×D4).40C4, C4.199(C22×D4), C22⋊2(C2×M4(2)), C4⋊M4(2)⋊35C2, C24.4C4⋊33C2, (C4×D4).360C22, C2.17(Q8○M4(2)), (C2×M4(2))⋊79C22, (C22×M4(2))⋊27C2, C22.180(C23×C4), C23.141(C22×C4), (C2×C42).760C22, (C23×C4).528C22, (C22×C4).920C23, C2.12(C22×M4(2)), C2.51(C2×C4×D4), (C2×C4×D4).72C2, C4⋊C4○(C2×M4(2)), (C2×C4⋊C4).72C4, (C4×D4)○(C2×M4(2)), (C2×D4)○(C2×M4(2)), C4⋊C4.247(C2×C4), C4.304(C2×C4○D4), C22⋊C4○(C2×M4(2)), (C2×D4).249(C2×C4), (C2×C4).1085(C2×D4), C22⋊C4.73(C2×C4), (C2×C22⋊C4).49C4, (C2×C4).831(C4○D4), (C22×C4).343(C2×C4), (C2×C4).294(C22×C4), SmallGroup(128,1666)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4×M4(2)
G = < a,b,c,d | a4=b2=c8=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c5 >
Subgroups: 420 in 272 conjugacy classes, 150 normal (38 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, D4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), M4(2), C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C24, C4×C8, C8⋊C4, C22⋊C8, C4⋊C8, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C4×D4, C4×D4, C22×C8, C2×M4(2), C2×M4(2), C2×M4(2), C23×C4, C22×D4, C4×M4(2), C24.4C4, C4⋊M4(2), C8×D4, C8⋊9D4, C8⋊6D4, C2×C4×D4, C22×M4(2), D4×M4(2)
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, M4(2), C22×C4, C2×D4, C4○D4, C24, C4×D4, C2×M4(2), C23×C4, C22×D4, C2×C4○D4, C2×C4×D4, C22×M4(2), Q8○M4(2), D4×M4(2)
(1 10 23 26)(2 11 24 27)(3 12 17 28)(4 13 18 29)(5 14 19 30)(6 15 20 31)(7 16 21 32)(8 9 22 25)
(1 5)(2 6)(3 7)(4 8)(9 29)(10 30)(11 31)(12 32)(13 25)(14 26)(15 27)(16 28)(17 21)(18 22)(19 23)(20 24)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 23)(2 20)(3 17)(4 22)(5 19)(6 24)(7 21)(8 18)(9 29)(10 26)(11 31)(12 28)(13 25)(14 30)(15 27)(16 32)
G:=sub<Sym(32)| (1,10,23,26)(2,11,24,27)(3,12,17,28)(4,13,18,29)(5,14,19,30)(6,15,20,31)(7,16,21,32)(8,9,22,25), (1,5)(2,6)(3,7)(4,8)(9,29)(10,30)(11,31)(12,32)(13,25)(14,26)(15,27)(16,28)(17,21)(18,22)(19,23)(20,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,23)(2,20)(3,17)(4,22)(5,19)(6,24)(7,21)(8,18)(9,29)(10,26)(11,31)(12,28)(13,25)(14,30)(15,27)(16,32)>;
G:=Group( (1,10,23,26)(2,11,24,27)(3,12,17,28)(4,13,18,29)(5,14,19,30)(6,15,20,31)(7,16,21,32)(8,9,22,25), (1,5)(2,6)(3,7)(4,8)(9,29)(10,30)(11,31)(12,32)(13,25)(14,26)(15,27)(16,28)(17,21)(18,22)(19,23)(20,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,23)(2,20)(3,17)(4,22)(5,19)(6,24)(7,21)(8,18)(9,29)(10,26)(11,31)(12,28)(13,25)(14,30)(15,27)(16,32) );
G=PermutationGroup([[(1,10,23,26),(2,11,24,27),(3,12,17,28),(4,13,18,29),(5,14,19,30),(6,15,20,31),(7,16,21,32),(8,9,22,25)], [(1,5),(2,6),(3,7),(4,8),(9,29),(10,30),(11,31),(12,32),(13,25),(14,26),(15,27),(16,28),(17,21),(18,22),(19,23),(20,24)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,23),(2,20),(3,17),(4,22),(5,19),(6,24),(7,21),(8,18),(9,29),(10,26),(11,31),(12,28),(13,25),(14,30),(15,27),(16,32)]])
50 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | ··· | 4N | 4O | 4P | 4Q | 4R | 8A | ··· | 8H | 8I | ··· | 8T |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | D4 | C4○D4 | M4(2) | Q8○M4(2) |
kernel | D4×M4(2) | C4×M4(2) | C24.4C4 | C4⋊M4(2) | C8×D4 | C8⋊9D4 | C8⋊6D4 | C2×C4×D4 | C22×M4(2) | C2×C22⋊C4 | C2×C4⋊C4 | C4×D4 | C22×D4 | M4(2) | C2×C4 | D4 | C2 |
# reps | 1 | 1 | 2 | 1 | 2 | 4 | 2 | 1 | 2 | 4 | 2 | 8 | 2 | 4 | 4 | 8 | 2 |
Matrix representation of D4×M4(2) ►in GL4(𝔽17) generated by
16 | 2 | 0 | 0 |
16 | 1 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 |
1 | 16 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 13 | 0 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 16 |
G:=sub<GL(4,GF(17))| [16,16,0,0,2,1,0,0,0,0,16,0,0,0,0,16],[1,1,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[1,0,0,0,0,1,0,0,0,0,0,13,0,0,1,0],[16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,16] >;
D4×M4(2) in GAP, Magma, Sage, TeX
D_4\times M_4(2)
% in TeX
G:=Group("D4xM4(2)");
// GroupNames label
G:=SmallGroup(128,1666);
// by ID
G=gap.SmallGroup(128,1666);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,184,2019,521,124]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^8=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^5>;
// generators/relations