# Extensions 1→N→G→Q→1 with N=C2×C4.10D4 and Q=C2

Direct product G=N×Q with N=C2×C4.10D4 and Q=C2
dρLabelID
C22×C4.10D464C2^2xC4.10D4128,1618

Semidirect products G=N:Q with N=C2×C4.10D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C4.10D4)⋊1C2 = C42.129D4φ: C2/C1C2 ⊆ Out C2×C4.10D432(C2xC4.10D4):1C2128,735
(C2×C4.10D4)⋊2C2 = C42.130D4φ: C2/C1C2 ⊆ Out C2×C4.10D432(C2xC4.10D4):2C2128,737
(C2×C4.10D4)⋊3C2 = M4(2).5D4φ: C2/C1C2 ⊆ Out C2×C4.10D432(C2xC4.10D4):3C2128,751
(C2×C4.10D4)⋊4C2 = M4(2).6D4φ: C2/C1C2 ⊆ Out C2×C4.10D464(C2xC4.10D4):4C2128,752
(C2×C4.10D4)⋊5C2 = M4(2).7D4φ: C2/C1C2 ⊆ Out C2×C4.10D432(C2xC4.10D4):5C2128,770
(C2×C4.10D4)⋊6C2 = M4(2).9D4φ: C2/C1C2 ⊆ Out C2×C4.10D4328-(C2xC4.10D4):6C2128,781
(C2×C4.10D4)⋊7C2 = C2×D4.8D4φ: C2/C1C2 ⊆ Out C2×C4.10D432(C2xC4.10D4):7C2128,1748
(C2×C4.10D4)⋊8C2 = C2×D4.10D4φ: C2/C1C2 ⊆ Out C2×C4.10D432(C2xC4.10D4):8C2128,1749
(C2×C4.10D4)⋊9C2 = M4(2).C23φ: C2/C1C2 ⊆ Out C2×C4.10D4328-(C2xC4.10D4):9C2128,1752
(C2×C4.10D4)⋊10C2 = C2×D4.3D4φ: C2/C1C2 ⊆ Out C2×C4.10D432(C2xC4.10D4):10C2128,1796
(C2×C4.10D4)⋊11C2 = C2×D4.5D4φ: C2/C1C2 ⊆ Out C2×C4.10D464(C2xC4.10D4):11C2128,1798
(C2×C4.10D4)⋊12C2 = M4(2).38D4φ: C2/C1C2 ⊆ Out C2×C4.10D4328-(C2xC4.10D4):12C2128,1801
(C2×C4.10D4)⋊13C2 = C4.C22≀C2φ: C2/C1C2 ⊆ Out C2×C4.10D432(C2xC4.10D4):13C2128,516
(C2×C4.10D4)⋊14C2 = (C23×C4).C4φ: C2/C1C2 ⊆ Out C2×C4.10D432(C2xC4.10D4):14C2128,517
(C2×C4.10D4)⋊15C2 = 2- 1+42C4φ: C2/C1C2 ⊆ Out C2×C4.10D432(C2xC4.10D4):15C2128,525
(C2×C4.10D4)⋊16C2 = C4.4D413C4φ: C2/C1C2 ⊆ Out C2×C4.10D432(C2xC4.10D4):16C2128,620
(C2×C4.10D4)⋊17C2 = M4(2).45D4φ: C2/C1C2 ⊆ Out C2×C4.10D432(C2xC4.10D4):17C2128,633
(C2×C4.10D4)⋊18C2 = M4(2).46D4φ: C2/C1C2 ⊆ Out C2×C4.10D4328-(C2xC4.10D4):18C2128,634
(C2×C4.10D4)⋊19C2 = M4(2).49D4φ: C2/C1C2 ⊆ Out C2×C4.10D464(C2xC4.10D4):19C2128,640
(C2×C4.10D4)⋊20C2 = C42.7D4φ: C2/C1C2 ⊆ Out C2×C4.10D4328-(C2xC4.10D4):20C2128,644
(C2×C4.10D4)⋊21C2 = M4(2).50D4φ: C2/C1C2 ⊆ Out C2×C4.10D4328-(C2xC4.10D4):21C2128,647
(C2×C4.10D4)⋊22C2 = C42.115D4φ: C2/C1C2 ⊆ Out C2×C4.10D432(C2xC4.10D4):22C2128,699
(C2×C4.10D4)⋊23C2 = M4(2).31D4φ: C2/C1C2 ⊆ Out C2×C4.10D432(C2xC4.10D4):23C2128,709
(C2×C4.10D4)⋊24C2 = C4⋊C4.97D4φ: C2/C1C2 ⊆ Out C2×C4.10D432(C2xC4.10D4):24C2128,778
(C2×C4.10D4)⋊25C2 = M4(2).11D4φ: C2/C1C2 ⊆ Out C2×C4.10D464(C2xC4.10D4):25C2128,784
(C2×C4.10D4)⋊26C2 = C2×C42.C4φ: C2/C1C2 ⊆ Out C2×C4.10D432(C2xC4.10D4):26C2128,862
(C2×C4.10D4)⋊27C2 = C4⋊Q8.C4φ: C2/C1C2 ⊆ Out C2×C4.10D4328-(C2xC4.10D4):27C2128,865
(C2×C4.10D4)⋊28C2 = M4(2).25C23φ: C2/C1C2 ⊆ Out C2×C4.10D4328-(C2xC4.10D4):28C2128,1621
(C2×C4.10D4)⋊29C2 = C2×M4(2).8C22φ: trivial image32(C2xC4.10D4):29C2128,1619

Non-split extensions G=N.Q with N=C2×C4.10D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C4.10D4).1C2 = C4.10D42C4φ: C2/C1C2 ⊆ Out C2×C4.10D432(C2xC4.10D4).1C2128,589
(C2×C4.10D4).2C2 = C4.10D43C4φ: C2/C1C2 ⊆ Out C2×C4.10D464(C2xC4.10D4).2C2128,662
(C2×C4.10D4).3C2 = M4(2).13D4φ: C2/C1C2 ⊆ Out C2×C4.10D464(C2xC4.10D4).3C2128,796
(C2×C4.10D4).4C2 = M4(2).15D4φ: C2/C1C2 ⊆ Out C2×C4.10D4328-(C2xC4.10D4).4C2128,802
(C2×C4.10D4).5C2 = (C2×Q8).Q8φ: C2/C1C2 ⊆ Out C2×C4.10D432(C2xC4.10D4).5C2128,126
(C2×C4.10D4).6C2 = C42.97D4φ: C2/C1C2 ⊆ Out C2×C4.10D464(C2xC4.10D4).6C2128,533
(C2×C4.10D4).7C2 = (C2×Q8).211D4φ: C2/C1C2 ⊆ Out C2×C4.10D4328-(C2xC4.10D4).7C2128,562
(C2×C4.10D4).8C2 = C4⋊Q815C4φ: C2/C1C2 ⊆ Out C2×C4.10D432(C2xC4.10D4).8C2128,618
(C2×C4.10D4).9C2 = C42.114D4φ: C2/C1C2 ⊆ Out C2×C4.10D464(C2xC4.10D4).9C2128,698
(C2×C4.10D4).10C2 = M4(2).33D4φ: C2/C1C2 ⊆ Out C2×C4.10D464(C2xC4.10D4).10C2128,711
(C2×C4.10D4).11C2 = C4⋊C4.98D4φ: C2/C1C2 ⊆ Out C2×C4.10D464(C2xC4.10D4).11C2128,779
(C2×C4.10D4).12C2 = (C2×C8).6D4φ: C2/C1C2 ⊆ Out C2×C4.10D4328-(C2xC4.10D4).12C2128,814
(C2×C4.10D4).13C2 = C2×C42.3C4φ: C2/C1C2 ⊆ Out C2×C4.10D432(C2xC4.10D4).13C2128,863
(C2×C4.10D4).14C2 = C4×C4.10D4φ: trivial image64(C2xC4.10D4).14C2128,488

׿
×
𝔽